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Abstract This paper is dedicated to the exposition of the theory of nonholonomic
manifolds. This exposition includes the following topics:

— geometry and classification of distributions

— algebraic structures (nilpotent Lie algebras and nilpotentization}

— nonholonomic dynamic systems and nonholonomic Riemann geometry

— hypoelliptic operators.

The systematic exposition of the nilpotent analysis apparatus allow to review all the old
and resent results from the unique point of view.
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INTRODUCTION

We shall use the term “nilpotent analysis” as a synonym of the longer expres-
sion “analysis on smooth manifolds with completely nonintegrable regular di-
stributions”, i.e. analysis on nonholonomic manifolds (the origin of the word
“nilpotent” in the present context will be explained later). This subject includes
geometry of these distributions, the basic notions of analysis on nonholonomic
manifolds (differentials, Hessians, singular points), dynamic systems, generated
by nonholonomic geodesic flows, metric problems, nonholonomic Riemann
geometry and the theory of differential and pseudodifferential operators (spec-
tral problems for hypoelliptic operators, hypoelliptic diffusion, hypohyperbolic
operators etc.). The collection of these topics constitutes the subject of the pre-
sent paper. This survey (as well as numerous other papers [1-15]) shows that
this topic is closely connected with singularity theory, random walks, control
theory, Riemannian geometry, partial differential equations theory and some
other regions of mathematics.

Do not include historical questions in the present survey, therefore we do
not mention earlier works, referring the interested reader to the historical survey
in [17]. Several problems from natural science must be also mentioned among
the sources of the present theory, such as mechanical and optical nonholonomic
problems, optimal control, quantization of systems with constraints.

The role of nilpotent algebras and Lie groups in this theory has been repeatedly
mentioned; however, this role was revealed only in the simplest cases. We ascribe
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categorial sense to these structures. Completely nonholonomic distribution
induces an equivalent structure of homogeneous nilpotent Lie algebras on the
band of the tangent bundle (nilpotentization). It turns out that systematic use
of this structure allows to expose (in a uniform manner) a lot of results obtained
earlier approximation theorem for nonholonomic e-ball, principal term theorem
for Weyl formulas for hypoelliptic operators etc).

Consequent use of the bundle of nilpotent Lie algebras leads to a revision
of main notions of analysis, starting with such notions as differential, critical
point etc. Note that the analogy with superanalysis, that seems natural at first
sight, is not completely precise, because nilpotent analysis is based on a different
generalization of standard commutative analysis superanalysis revises the notion
of a variable, while nilpotent analysis revises the notion of ajet (i.e. derivatives).
The simplest and most investigated case of nonholonomic manifolds is the case
of contact structures, where Heisenberg algebra plays the role of the nilpotent
algebra. However, even for this case metrical and variational problems are poorly
investigated.

The present paper does not pretend to be a complete exposition of nonholo-
nomic analysis, we consider only as a convenient instrument for solving problems
from nonholonomic geometry. The contents of this paper can be seen from the
above titles of points. The first part is devoted to the consequent exposition
of the main notions of analysis on nonholonomic manifolds: geometry of distri-
butions (1), construction of the bundle of nonholonomic Lie algebras on non-
holonomic manifolds (2); necessary information about the homogeneoué nil-
potent Lie algebras and their classification (3). In 5 and 6 we describe a graded
Lie algebra of vector fields jets on a nonholonomic manifold; before that we
prepare a formal model, necessary for that description (4). In 7-9 we explain
the questions, connected with nonholonomic Riemann metric; in 7 its definition
is given, in 8 asymptotics of e-balls is described, in 9 formula for the Hausdorff
dimension of a nonholonomic manifold is given. The last (10) of this part is
devoted to the exposition of basic notions of nilpotent analysis (first and second
differentials of a function on a nonholonomic manifold, critical point, nonholo-
nomic Hessian).

The beginning of a second part (11-15) is devoted to nonholonomic Riemann
geometry and to dynamical systems, generated by a nonholonomic geodesic
flow. In 11 a Hamilton formalism is presented, that allows to define a flow
in the contangent bundle, and a Lagrange formalism, defining a flow in the
“Centaurus” — a mixed distribution, that is a direct sum of the original distri-
bution and the codistribution, that is its annihilator in the cotangent bundle.
Nonholonomic geodesic equations are given (12). Reduction of nonholonomic
geodesic (Ag) flow of Lie groups is described, and complete description of
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Ag-flows is given for the simplest case — the flow on 3-dimensional Heisenberg
group (13). The ergodic theorem for a Ag-flow on SL,R isgiven (14), and the
description of singularities of non-holonomic wave fronts for 3-dimensional
Lie groups is given in 15.

The remaining paragraphs of this part are devoted to the questions, connected
with nonholonomic Laplacian: its definition is given in 16, a theorem on hypo-
harmonic functions — in 17, nonholonomic Green formula — in 18. The last
two paragraphs (19-21) are connected with formulating a conjecture about the
main term in Weyl formula for nonholonomic Laplacian: in 19 the main quasi-
homogeneous part of a nonholonomic Laplacian is constructed, and Metivier
theorem about asymptotics of spectral function is given; in 20 the connection
between the asymptotic behaviour of eigenvalues’ growth and non-holonomic
diffusion is given.

The present survey is summarizing the earlier papers by the authors [16-25]
but the present exposition is independent on that works and it contains new
results. It contains also a systematic exposition of a new apparatus which allows
to review both the new and recent results from the unique point of view. The
authors are new working further papers on nilpotent analysis and problems of
nonholonomic geometry. Note that our reference list is in no sense complete,
because it cannot be made complete without abnormal increase of its volume;
references in the text are also sometimes not complete.

The authors are happy to dedicate this paper to 75-th anniversary of lzrail
Moiseevich Gel’'fand, a remarkable scientist, thinker, teacher of mathematicians.
whose personality and whose talent attract attention and cause great interest
of mathematicians of different countries, specializations and ages.

Part]1 Nilpotent analysis

1. DISTRIBUTIONS’ GROWTH VECTOR

By a distribution V on a smooth manifold M one understands a smooth
subbundle ¥V = {V(x), x € M} of a tangent bundle TM. A vector field & on
M is called admissible with respect to the distribution V if £(x) € V(x) for
arbitrary point x € M.

For every point x € M construct a chain V(x) = V1 x) C Vz(x) C... of
linear spaces in a tangent space T, M defining V,(x) as a linear envelope of all
the values (in this point x) of vector fields, that can be represented by Lie bra-
ckets of length <i, of admissible vector fields. So V2 =[N, V1]" .,
V, = [Vi_l, V1 J. By a growth vector of a distribution V' in the point x we
denote a sequence of integers {ni(x)}, where nz.(x) = dim Vl.(x). Will call the
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distribution regular, if for every i the function ni(x) is constant on the whole
manifold M. For regular distributions the set of linear spaces {Vl.(x), x EM}
forms a distribution Vi on M. This chain of distributions V, CV, C... wil
be called a Lie flag of a regular distribution. (In the present paper by a distri-
bution we’ll understand regular distributions — except several cases, when the
opposite will be explicitely stated. In order to investigate nonregular distributions
one needs a new notion of a differential system, more general than the one
used in the present paper, see [17]).

We’ll call a distribution completely nonholonomic, if, starting from some
i > the equality Vl. = TM is true. The smallest such i is called the nonholono-
mity degree of the distribution V; usually[ will denote this degree by & = kV.

On the set of all growth vectors a natural partial ordering can be defined:
{n}}> {nl.w b, if for all i inequalities n) > n;" are true. Therefore we can speak
about the maximal element in the set of all growth vectors, corresponding to
distributions of given dimension in IR”.

The notion of regularity, complete nonholonomity etc, already defined for
distributions, can be naturally transferred togermsandjetsof distributions. In
particular, germs of regular distributions admit the following characterization.

PROPOSITION 1.1. A germ (jet) of a distribution V in a point x €M isregular
iff the module, formed by germs (jets) of V-admissible vector fields, is free over
the ring of germs (respectively jets) of smooth functions on M. _

Growth vector is one of the main characteristics of distribution. Let’s first
describe germs of distributions of maximal growth. By S’T we denote the set
of all germs of m-dimensional distributions in the point O € IR,

THEOREM 1.2. 1. All distributions of maximal growth from S;l" have one and
the same growth vector (hence one and the same nonholonomity degree).

2. The components {ﬁl} of the maximal growth vector from S;" up to
the % = nonholonomity degree coincide with the dimensions growth of homo-
geneous component in free Lie algebra with m generators, i.e. the following
formula is true:

ﬁl. =dim 8,
where 8, = ;‘21’ g 7 and gf is an j-th homogeneous component of the free
Lie algebra g with m generators.

Let’s denote nonholonomity degree of a distribution of maximal growth
from ST by kn,m' Due to theorem 1.2 one can calculate k"’m using a well-
known formula for the dimensions of homogeneous components of free Lie
algebra with m - n, generators (see, e.g. [26]):
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1 )
(1.1) n—H_, = — Z u(d) njd
I djj

This formula shows that for fixed n, the dimension n‘] of j-th component

has the following asymptotics (n1 =m):

J

.M
n]. ~ —

]
and therefore for fixed m we obtain the following asymptotics describing
how nonholonomity degree grows with #:

kn,m ~ logm n
oo

One can identify the set S,’l" with the set of germs of sections of the trivial

bundle

5:U—>UxGr,'l"

where U isagermin O € R”, Gr,”" is a Grassman manifold of m-dimensional
planes in IR". This identifications allows to define a structure of infinite-dimen-
sional manifold on S"I" namely a manifold on which Whitney C ™-topology
is defined (for its definition see e.g. [27]). Typical distribution germs are descri-
bed as follows.

THEOREM 1.3. Distributions of maximal growth form an open everywhere dense
subset of Sr'l" in the sense of Whitney’s C* -topology.

COROLLARY. A germ of a distribution V &€ S"l" in O € R® that has maximal
growth in O, isregular and completely nonholonomic.

For degenerate distributions two groups of problems arize. The first one is
connected with distributions, whose growth is less than maximal in isolated
point, while in the neighbourhood of this point the distribution has a maximal
growth. These problems include description of degenerations of small codimen-
sions of their stratifications, possibility of some normal form for jets of such
distributions etc. Some of these problems are analysed in [24].

The second group consists of problems, connected with regular distributions
of non-maximal growth. Codimensionality of the set of such distributions in
S"l" is oo . In this case adequate calculations of dimensions and codimensions
must be organized in terms of functional modules — their total number, the
number of variables in them. Due to page limit we have no possibility to deal
with these problems in the present survey, therefore we refer the interested
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reader to the paper [21].

We also want to point out a special and very important branch of the theory
of regular distributions of nonmaximal growth namely, investigating left-inva-
riant distributions on Lie groups (or their homogeneous spaces). In this case
the distribution ¥V = {V(x), x € G}is uniquely determined by a linear subspace
of a Lie algebra g= TeG and so the set of such distributions is finite - dimen-
sional. Here such problems arise as describing maximal growth for various types
of Lie groups, and describing stratification of degenerations. The authors do not
know any publications devoted to these problems.

2. NILPOTENTIZATION (*)

By a nonholonomic (smooth) manifold we’ll understand a pair (M, V), where
M is a smooth manifold, V — a regular and completely nonholonomic distri-
bution on M (cf. 1). Nonholonomic manifolds form a category (we’ll denote
it by, AC# ) where morphisms W, Vl) - (M,, Vz) are smooth mappings
of manifolds M, f)Mz transforming one distribution into another. Every
smooth manifold M can be consider as nonholonomic with V' = TM, so the
category of smooth manifolds can be considered as a full subcategory of the
category A_# . Another important subcategory of A .# is a category NG
of nonholonomic Lie groupe, whose objects are pairs (G, V), where G is a
Lie group, and V-left-invariant completely nonholonomic distribution
on G. Local versions of categories A/.# and 4G can be naturally defined:
namely, the categories of germs of nonyolonomic smooth manifolds and of
nonholonomic local Lie groups. Due to classical Lie theorem (see, e.g. [26]),
that establishes correspondence between local nonholonomic Lie groups and
nonholonomic Lie algebras, the objects of this category are pairs (g, v ),
where § is.a Lie algebra, v - a linear subspace of § , generating v asa Lie
algebra.

Our goal is to prove the following theorem.

THEOREM. The regular distribution on a smooth manifold M define the canoni-
cal bundle of nilpotent homogeneous Lie algebras g VM = {§,} over M.

Remark. This bundle can be identified noncancnically with tangent bundle
TM (see 7). The identification is any point: TxM ~ 8, is unique up to an auto-
morphism of nonholonomic Lie algebras g iy

The theorem is based on the following construction. Let us introduce the vec-

to space
g, =2 V)V, x).

(*) See [42].
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LEMMA. The following definition of Lie brackets is correct. Denote
Vi=V,/V, (%),

tEEev, we’ll denote the image of £ in I;'l. by gl.. For arbitrary £ € I7i and
VS VI we define a Lie bracket by a formula

~ o~ — ~
(£ 91={c V1€ 7,

where £, Y are representatives of 2 and \Z’ in Vl. and V. correspondently.
We’ll say that the ideal of relations in a graded Lie algebra is homogeneous,
if together with arbitrary element it contains all its homogeneous components,
Nilpotent Lie algebras g form a bundle over M; we’ll denote it by g, M.
We’ll say that a nilpotent Lie algebra is homogeneous if it is a factoralgebra of
a free algebra over the homogeneous ideal.
Summarizing all that we obtain the following statement.

PROPOSITION 2.1. Tangent bundle of a nonholonomic manifold (M, V) has
a canonic structure of a bundle of homogeneous nilpotent Lje zjlgebras g VM
so that morphism of nonholonomic manifolds ¢ : (M, V)— (M, V) cormresponds
to morphism of bundles gVMdi | VM‘ The bundle of Lie algebras g M
over a nonholonomic manifold (M, V) allows to construct a bundle of non-
holonomic Lie groups GVM, whose bands are Lie groups Gx, corresponding
to the algebra g, We’ll say that this group G is an osculating Lie group
of a nonholonomic manifold (M, V) in a point x.

Bundle morphism dy g, M~ gVZI7I will be called a differential of a map-
ping ¢ of nonholonomic manifolds. The differential dy is a homomorphism
of Lie algebras B, > B,y ON évery band, a homomorphism, smoothly
depending on a point x of a manifold.

Note that over for different points x of the manifold corresponding Lie
algebras g, have the same dimensions vector (formed by dimensions of homo-
geneous components), but, generally speaking, they are not isomorphic, in other
words, g VM is not a locally trivial bundle of Lie algegras over M. In view
of this fact the notion of smooth dependence on the point x € M needs some
comment.

Let U be a sufficiently small neighbourhood of a point x Let’s fix a trivia-
lization TU = U x R™_ Let’s consider all possible nilpotent homogeneous Lie
algebras, for which the underlying linear space coincides with IR”, and growth
vector — with N. Denote the set of all such algebras by NilN.

PROPOSITION 2.2. Germs of nonholonomic manifolds with given growth vector
have a structure of infinite-dimensional smooth manifold, that can be naturally
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identified with the manifold of germs of smooth sections U - U x NilN.

This identification allows to speak about smooth dependence of the above-
constructed Lie algebras g, and their homomorphisms etc. on the point x € M.
In (3) the set NilN will be analysed in more detail, and in the present point we
restrict ourselves to the description of a bundle Nil,, - Fl,, where FIN is
a space of flags with growth vector M.

Eve;y nilpotent homogeneous Lie algebra g € Nil,, defines on IR" a flag
of subspaces W1 CW,C...

dim Wi =n, whose members are elements of natural filtration on IR”. Among
all such flags {Nwi} € Fl, a canonic flag fI, ={R™ CIR™ C...} is naturally
selected. By Nil,, will denote the set of all elements of NilN with flag ﬂN.

PROPOSITION 2.3. Assume N = { nl.}:.‘zl is a realizable growth vector. Then the
following statements are true:

1. The manifold Nil,, isa direct product
Nil,, = Nily, x FI,

2. Fl,, is a homogeneous space of the group GL,; namely FIN = GLn/ -@N
where .@N is a subgroup of blockwise uppertriangular matrices with blocks
of sizes {n, —n, }* .

3. Nil v is an algebraic manifold of structural constants.

3. HOMOGENEOUS NILPOTENT LIE ALGEBRAS

Assume g is a homogeneous nilpotent Lie algebra with growth vector
N = {ni}' The complement to [ g, g ] in g is called a standard linear space,
and the correspondent left-invariant distribution on Lie group g is called a
standard distribution.

PROPOSITION 3.1. 1) Automorphisms group of Lie algebra: g acts transitively
on the set of all standard subspaces of g
2) For free k-step for every k the following exact sequence

0-[8,8]~>18 ‘)9/[“1"0

determines the factorization of Aut g into the semidirect product
Autg = GLn, ARMx(-n)

The elements of the type (g’ 0) correspond to automorphisms of standard
space.

Further on by a nilpotent nonholonomic Lie group we’ll always understand
a nilpotent Lie group with a standard distribution (of course, only in case some
other distribution is not explicitly defined).
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A nilpotent homogeneous Lie algebra, considered as a linear space, can be
decomposed into a direct sum of homogenepus components

g= 0'e 520 3. .o gk

where g”j =1 gi, gj]. This decomposition allows to define on 5§ a one-
parametric automorphisms group {ht}tEIR «» that is an image of multiplicative

group IR* for the diagonal imbedding

o 0
O(»—>(\\

S Aut gy
0 *

Transformations ht are called dilatations. Automorphism ht coincides

with multiplication on # on each component g/, and can be extended to the

whole 5 by linearity.
For the following it is important to single out cases when the bundle g VM

is locally trivial.

a) Distributions of general position

Assume the germ of a distribution of dimensional n, in M is of maximal
growth we’ll call the dimension M exact, if it coincides with ﬁk = dim §k
for some k, where § isafree Lie algebra with n generators (cf. 1).

If the growth V' is maximal and the dimension »n is exact, then for every
x the algebra g isfree nilpotent Lie algebra of k-th step with n, generators,
and the bundle g, M islocally trivial

In case the growth ¥ is maximal, but dimension of M is not exact, Lie
algebras g are, so to say, “free up to the last step”, that is, on this last step
nontrivial relations arize, that depend on the point x € M. To be more precise,
let’s denote by @’Iz‘l a functor, that transforms a homogeneous nilpotent
k-step Lie algebra gy into (kK — 1)-step Lie algebra that is obtained from gy by
a factorization modulo the commutative ideal g¥. This functor @:” indu-
ces the functor on the bundle of nilpotent algebras on the manifold. These
considerations mean that bundle ©% -1 g is locally trivial. The germ of a bundle
g VM for a distribution ¥ with maximal growt~h vector can be not locally
trivial, if there exist nonisomorphic Lie algebras in Nz'lN.

Arbitrary algebra g¢& NiZN can be viewed on as an image of a free nilpotent
k-step Lie algebra §, with respect to the homomorphism ¢ : g, - B such
that the diagram

g 5> 3
ok 1] lek -1
§k71 -5



NONHOLONOMIC MANIFOLDS AND NILPOTENT ANALYSIS 417

is commutative. So in this case the manifold 1\7ilN can be identified with
H=Hom (R"% “"k -1 R" "k -1) where A, =dim g,
The set of all classes of isomorphic algebras from NilN can be identified

with H/GL , R x GL R. Soif

m-ng_|

(3.1 nf+(n—ng ) =dim GL, R<dimH= (i, —n,_)n—-n__)

then nonisomorphic algebras exist.
All these considerations can be summarized in the following statement.

PROPOSITION 1.3.2. Assume (M, V) is a germ of a nonholonomic manifold,
V' is of maximal growth. Then:

a) In case the dimension of M is exact, then the bundle g VM is locally
trivial.

b) In case the dimension of M is not exact, and the inequality (3.1) is true,
then there exists a germ of a nonholonomic manifold (M, V) such that n=dim M,
n, =dim V' and the bundle is not Jocally trivial.

Case (b) of this proposition is a most important case, in which the bundle

8, M isnot locally trivial.

Let’s now turn to other cases, when distributions are not in general position,

but the bundle g, M is locally trivial.

b) Nonholonomic Lie algebra

A tangent bundle over Lie group G is a direct product G x g of that group
and its Lie algebra. Assume (G, v ) is a nonholonomic Lie group, (g, v ) is
its nonholonomic Lie algebra. Let’s define a functor », that puts into corres-
pondence to each nonholonomic Lie algebra (g, v ) its nilpotent homogeneous
Lie algebra:

J?ﬁ"

v/u, .

—

i=

PROPOSITION 1.3.3. The bundle gVG of nilpotent Lie algebras over nonholo-
nomic Lie group (G, V) is trivial

gVGz Gxv(yg,uv).

Example. For arbitrary 3-dimensional Lie group G the bundle of nilpotent
Lie algebras over G is isomorphic to G x n
Heisenberg algebra.

3 where ny is a 3-dimensional

¢) Cases that can be (locally) reduced to group ones

Let’s fix dimensions #n of a manifold and n of a distribution. We want
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to find out for which (n, nl) the germ of a nonholonomic manifold (IR", V),
where V is a distribution in general position, is isomorphic to a germ of a non-
holonomic Lie group.

The most important case (and at the same time the simplest of such cases) is
that of contact manifolds (see, e.g. [28)). In this case the germ of (IR", V)
in every point is isomorphic to the germ of a nonholonomic Heisengerg group

Ny, 1> where 21 + 1 = n. Therefore the germ of a bundle g V]Rz”l is trivial
because for germ of contact manifolds: g, R*"*1 = U x A, | where U
isa germ of R+ 1 J‘/ZI+ | (21 + 1)-dimensional Heisenberg algebra.

1. Note that in the nongroup case globally the bundle g, M is generally
speaking not trivial even if it is locally isomorphic to a group one, and the mani-
fold M is contractible. The simplest examples of such situation are nonstandard
contact structures on IR* (cf. [29]).

2. Besides contact structures, there exists only one case of dimensions
(n, nl) = (4, 2) when the germ of a distribution in general position is isomorphic
to a germ of left-invariant distribution on a Lie group (see [21]). In this case
the germ (IR4, V) is isomorphic to a germ (G, V), where G is a nilpotent
Lie group of degree 3 with 2 generators. Its Lie algebra is defined by the
basis &, &,, 53, £, and the following relations [£, 22] =£5 [Sl CE =&
[£,£,) = 0:15.£,1=0,i=1,2,3.

(Distributions on this group were investigated as far back as in Engel’s work
— in connection with partial differential equations, (see [6]) (¥).

4. ALGEBRAIC MODEL OF A JET OF A NONHOLONOMIC MANIFOLD

In the present point we describe a graded Lie algebra of formal vector fields,
that serves as an algebraic mode! of Lie algebra of jets of vector fields on a non-
holonomic manifold.

Let’s consider Lie algebra % of formal vector fields, defined as a module over
the ring R= R [[x ,..., x,]] with base {o/ox, , i=1,..., n}. For growth
vector N ={nt.}’.‘ let’s define a function ¢, 2:n—>1;k by setting

i=1
«pN(j) =i for n_y <i< n. Let’s define a graduation as the following:

n
Y X zhe 0=l =12

i=1

M = Lin

The corresponding filtration in R is then defined by a chain of ideals

M=o M.

]_-1'21'

(*) Nilpotentization arises many interesting problems concerning distributions generated
by polynomial vector fields, some of them were discussed in [40].
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The ring R with filtration, determined by a given growth vector, will be denoted
by R N The following statement describes the properties of this filtration.
PROPOSITION 4.1.

1) Ry/# =R

2)%1/‘/”2 ~ .41 =~ R™

3) Denote by R(i) the ring of formal power sel('"es of the variables X,
ng’ R(1') = ]R[[xni,1+l’ T

in R @ Then the following equalities are true:

S X . ,xni]] by denote a maximal ideal

1

k
RN= ® R(i)

i=1

1). k)

./”I: Z ‘/(ﬂ)l‘ ® "'®‘(/Il)llk

, . k 1

Gy igy 5 ij'i=l}

j=1

Let’s define a function ord: RN—>N, as follows: for arbitrary p € Ry
ord p = min{i | p € A,;}. We went to extend this function to the whole & there-
by defining a filtration on & It is sufficient to extend ord to monomials of the

type
n ]
(1T 5 -
i=1 ax].
that generate £ as a linear space. We define ord for such monomials by a formula

ord (1111 xﬁi )_8 L ord (ﬁ x,{i) —py)=
i=1

ax]. i=1

=( Z I «pN(i)) — oy ).

i=1

This extension of ord to & leads to a graduation &/ = Lin{p | ord p = j}
and a filtration

a decreasing chain of linear subspaces of an algebra . Let’s denote a Lie al-
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gebra % with filtration, corresponding to growth vector N by ZN.

PROPOSITION 4.2.

D ¥, =%.2, .= %=o0

i=—k

2) ,% is a subalgebra of the algebra %),
3) for every i>0 %, ison idealin .

Filtrations /%]. and fl’}. are consistent in the sense that /%I.ﬁf;. C %H.
and i’;J/lI C //H]. (in the first case multiplication means multiplying vector
field and a power series, in the second case — differentiating of the power series
along the vector field jets).

In our algebraic model free "y -dimensional submodules of £ play the role
of regular distributions (see 1); in fact, as we’ll see in the following point, it
is sufficient to consider only the submodules ot",?1 .

Let’s describe properties of such' submodules. First of all introduce the flag
of a submodule v:v, =wv, ..., v, = [v;_;» U1] for i > 1. Define also the

1
flag of linear spaces V', CV, C... with V, = R”, and

0 0
Vi=R"i=Lin {—,...,
axl 0x

ni
PROPOSITION 4.3. Let v C ,S,p_l be a free n,-dimensional submodule. Then
the following statements are true:
Dy, C ,,Yiz. and vi/.//1 =V;
k L~ " 0 0
2)U=Z.//11Vi where V. = Lin ey ——
! ax ax"i

i=1 nj_y+1

Arbitrary automorphism of the graded ring R (or of algebra .fN) is

N
uniquely defined by the linear transformation of x x,.. Let’s define

an action of dilatation group {ht}, t € R* on the 1r,ing R,N A:md Lie algebra
,?N:
hofley,oo,x ) =fx,, . 2D g ..,thn)
5] 0 1
ht \f(xl, coeX,) P =flx,, ..., thn) 5 D
] j

The following proposition is evidently true.
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PROPOSITION 4.3. The group { & t} acts as multiplication by # on every homo-
geneous component M7, L.

Remark. The Lie algebra of formal vector fields, i.e. algebra of formal diffe-
rential operators of first order, can be used to construct a universal enveloping
algebra U N of formal differential operators of arbitrary order over the ring
R y Doth the graduation and the action of group {hr } can be naturally extended

to such an algebra.

5. QUASINORMAL FORM

A regular distribution ¥ on a manifold M allows for arbitrary x € M to
define a filtration on the ring of jets JxM of smooth functions and in the Lie
algebra of jets Jx Vect of vector fields over that ring. This filtration is defined
by means of a function ord, whose construction is alike ard in the algebraic
model (see 4). Let’s define ord consequently extending its domain of definition:

a) For jets of admissible vector fields assume ord§ =—1

b) For vector field y €V, \ V., , assume ord y = —i.

Definition of orfd for jets of functions from JxM is based on the following
statement.

PROPOSITION 5.1. Assume (M, V) is a nonholonomic manifold, x € M. Then
for arbitrary fGJxM different from 0, there exist vector fields
gl, A ,.El EJx Vect such that

(& 5D ) #0
c) ForfEJxM, f# 0, define ofd as:
~ . L
ord I = {6 B 1 ety D)% 0) (_ ,; ord Ei)

Assume ord 0 = + oo,
The above defined function oFd determines a filtration Jll D j[2 O...
in the ring JXM where the ideal

M, ={fe I M| ord [ >i}.
d) For elements of Lie algebra Jx Vect the function ord is defined as fol-
lows: for 1[/EJx Vect
ord y = max { ]| V,-‘P%Cﬂ~ }

i+j

and the corresponding filtration is
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v, = {y €J, Vect| ¥,y M, C ﬂi+],}

Remark. Filtrations //i and v, are uniquely determined by the correspon-
dent graduations #' and v’'. These graduations can be described directly,
although such description is somewhat cumbersome. We’ll now describe a quasi-
normal form theorem, that allows to obtain these direct descriptions by simple
trasferring them from the algebraic model (see 4):

Evidently the rings R . and J M are isomorphic as abstract rings, and the
Lie algebras J_ Vect and Z}V over that rings are isomorphic. Such as iso-
morphism is established by choosing a jet of coordinate system in the point
x € M. We want to probe that, moreover, one can always choose a special coor-
dinate system, in which this isomorphisms of rings and algebras preserve filtration.

THEOREM 5.2. (on quasinormal form). Assume (M, V) is a germ of a nonho-
lonomic manifold in some point x, N is a growth vector of V. Then for ar-
bitrary isomorphism x between RN and JXM, considered as abstract rings,
there exist an automorphism ¢ RN & such that x¢ is an isomorphism
of filtered rings.

This theorem admits the following reformulation.

THEOREM 5.3. (on the quasinormal form of jets of nonholonomic distributions).
Assume (M, V) is a germ of some nonholonomic manifold in a point x . Then

there exists a coordinate system {xi MR = 1, ..., n} in some neigh-
bourhood of the point x, such that the jet of every admissible vector field
liesin & .

We'll call such coordinate systems consistent with the distribution V. Note
that generally speaking, there exist different coordinate systems, consistent
with V.

COROLLARY [24]. Assume (M, V) is a germ of a nonholonomic manifold in
some point x, and the coordinate system is consistent with V. Then the jet
of arbitrary admissible vector field ¢ has tte following form:

1
£E= E i, . | x;,
(PN 3 5 I
5 o b+ 1 v

ji=

]
ox

i1+

where S contains only sets of indices for which the following inequality is

true:

1
eyl <1+ ) 0, 0).
=1
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We’ll call such form of representation of admissible vector fields quasinormal.
The prefix “quasi” notes that such representation is not unique.

Remark. Filtered isomorphism of rings and Lie algebras, that is induced by a
coordinate system consistent with the distribution, allows to transfer to JxM
and J_ Vect graduations from correspondingly Ry and YN. We’ll denote
the images of %! that are obtained by this correspondence, also by Z°.
This correspondence allows also to define the action of quasihomogeneous dilata-
tion group to JxM and Jx Vect.

6. PRINCIPAL QUASIHOMOGENEOUS PART (AND QUASIJETS) OF THE
DISTRIBUTION

Assume (M, V) is a germ of some nonholonomic manifold, N = {ni}:.‘=l
growth vector of the distribution V; .YN =~ Jx Vect the Lie algebra of jets
of vectorfields in some point x € M. For i > — k let us denote by p; the
projector

p,: g’N:( ® Ef)».s,”"

j=—k

For admissible vector field £ piE = 0 if i<—1. By a principal quasihomo-
geneous part of an admissible vector field § we’ll understand £-1) = p_lf.
Let us introduce projectors Pi, i>—1 where

i
b= Z py-

i==1

Let us define i-quasijets of admissible vector fields & as JiVE = P,.S. So the
principal quasihomogeneous part of £ is O-quasijet of &. By i-quasjjet .I’VV
of a distribution ¥ we’ll understand the distribution V) generated by
{J"V £}-i-quasijets of admissible vector fields; V() we’ll call a principal quasi-
homogeneous part of a distribution V, i.e. O-quasijet of V.

THEOREM 6.1. (on principal part of the distribution).

Assume (M, V) is a germ of a nonholonomic manifold in some point x
and the distribution V) isa principal quasihomogeneous part (O-quasijet)
of V. Then the germ of nonholonomic manifold (M, 0y is isomorphic to
the germ of osculating nonholonomic Lie group (Gx, Vx) (see 2).

Quasihomogeneous part of admissible vector field has the following form
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where

1
eyl )= ) v, ).
j=0

If we choose base in the set of all admissible vector fields, then their principal
quasihomogeneous parts form a basis for a Lie algebra 8., and the coefficients
M i determine structural constants of that algebra. (The converse
is not true: structural constants do not determine the coefficients M i
uniquely; this nonuniqueness can be easily seen on the simplest example —
contact structure in IR3 ). Therefore a question naturally arizes — how to choose
a basis of vector fields, and a consistent coordinate system, so that the set of

coefficients { p; } be maximally simple. It turns out that in the
.

Cip e
most important case — that of distributions of maximal growth — the algebra
g, is close to being free, and our aim can be achieved. Let’s first describe the

simplest case — the case of exact dimensions.

Distribution of maximal grow th in exact dimensions

In this case algebra g, isthefree nilpotent k-step Lie algebra §k with
n,  generators. Let’s remind the classical description of linear basis in
5, (see [26]2.

Assume £ is a free (noncommutative) monoid with n te
them by ©,, ..., ®n, . .There exists a natural graduation in this monoid; &*
is a set of all words of length i. Denote

generators; denote

7-Uw

j<i

Let’s construct in & a subset £ consequently defining components
Pi=PnN 9’71__

1) 2! is a set of generators ©
and denote this ordering by >.

2) #? isa set of pairs \l/l, ¥, where vy v, € 21 and vy <y,

Let’s then order arbitrarily all elements of 2?2, and assume that Pl < P2,

3) Suppose that 21 . P} i>2 are already constructed. Define Ppirl
as subset of gw’”l, formed by such words ¢, that admit the unique repre-
sentation in the form ¢ = ¢, (Y, ¢¥,), where (¢, i= 1,2, 3} satisfy the

i

K N O Let’s order them arbitrarily,
1
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following conditions:
a) ¥, <(¥, ¥3)
b) ¥, <y,
OV, =y,

Order 2'*1 arbitrarily, and assume that 2.< P+l

Such a set & is called a Hall family in the free monoid with n, generators.

The choice of such family is not unique, because one can choose ar%)itrary order-
ing for each of the “homogeneous components” 2 . For further considerations
it will be convenient to suppose that scme choice is fixed for every n, .

Assume g, ..., &, 1s a set of generators of free Lie algebra ~§ . A~mapping
v:©, »g,i=1,..., n, can be extended to the mapping & — g , which
transforms every word ¢ € @ to the following elements of g: ¢ € 2 can
be uniquely represented as a product of generators. Change every generator
91. in this product expression to & and every round bracket to a Lie bracket.

THEOREM (Hall-Witt). The image of the subset £ under the mapping v isa
homogeneous basis of the free Lie algebra g .

This theorem shows that it is convenient to enumerate the base of vector
fields by the elements of Hall family; formula (6.1) shows that it also convenient
to enumerate coordinates by the same elements. So we arrive at the following
statement. ~

THEOREM 6.2. [24]. Assume (M, V) is a germ of a nonholonomic manifold
in some point x, distribution ¥V is of maximal growth N = {ni}i.;l, and the
dimension #n = dim M is exact. Then there exists a coordinate system jet in

x, consistant with the distribution, in which the principal quasihomogeneous

parts of vector fields 561 R E@ forming the base for ¥ have the following
nl
form:
0
0= L i
s X141

where the subset S includes all sets { xi}li‘;% , satisfying the condition

Ko = %00 G (g %) )
(here multiplication is understood in the sense of a free monoid).

Remarks. 1) For distributions of maximal growth the local trivial character
of the bundle of nilpotent Lie algebras allows to obtain more precise results
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namely, one can obtain the canonic form not only for the principal quasihomo-
geneous part, but for the some other components as well, thus obtaining the normal
form for jets of vector fields, see [24]

2) Theorem 6.2. can be extended to the case of distributions of maximal
growth and non exact dimension of a manifold, only slight modifications are
necessary, connected with the existence of nontrivial relations on the last step
(see 3).

7. CARNOT-CARATHEODORY METRIC

By a metric tensor g, ona nonholonomic manifold (M, V) will understand
a positive definite symmetric quadratic form on the distribution V. If M is
a Riemann manifold, then such a form is essentially obtained by restricting
metric tensor to V, the inverse is also true, namely, every metric tensor on
V' can be extended to some metric tensor on TM.

A nonholonomic manifold, equipped with such a quadratic form on V will
be called a nonholonomic Riemann wmanifold.

A curve v : IR! - M is called admissible if it is a morphism of nonholonomic
manifolds (IR!, TR') - (M, V). The existence of positive definite tensor on
V allows to calculate lenghts of admissible curves.

THEOREM 7.1. (Rashevsky, Chow [30, 31]). Assume (M, V) isa nonholonomic
Riemann manifold. Then arbitrary two points x, y € M can be connected by an
admissible curve of finite length.

A metric py, can be naturally defined on a nonholonomic Riemann mani-
fold (M, V), in which a distance between the points x, y € M is defined as a
minimal length of all admissible curves, connecting x and y :

1
p,(x, )= / gy (¥(0), Y)V? de
Sxy o

where

Se y —{y:(R!, TR ) > M, V)| v(0) =x, v(1)=y}.

This metric is called Carnot-Caratheodory metric.

By a nonholonomic geodesic we understand an admissible curve v : R! »M
such that for arbitrary points x, ¥y on 7 that are sufficiently close to each
other, the length of the interval of -, connecting those points, equals to

py(x, ¥).
Filippov’s lemma [32] allows to extend Hopf-Rinov theorem [33] to non-
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holonomic manifolds:

THEOREM 7.2. for arbitrary two points x, y of a nonholonomic Riemann
manifold there exists a shortest nonholonomic geodesic, connecting them.

Remark. A specific feature of nonholonomic manifolds is that even for arbi-
trary  close pairs of points there can exist several shortest geodesics; in other
words the set of point, conjugate to some point x € M, is not necessary isola-
ted; it include submanifolds of positive dimensions, that contain that point x
and its structure can be very complicated. The only thing one can guarantee
that for any nonholonomic geodesic <y, ¥ is the unique shortest geodesic, con-
necting arbitrary sufficiently close points, belonging to 7.

Let’s denote by @Z (x) the e-ball in the sense of the nonholonomic metric
by and by S‘:(x) — the e-sphere. The following statement, establishes equiva-
lence of different nonholonomic Riemann metrics.

PROPOSITION 7.3. Assume (M, V) is a germ of a nonholonomic manifold. Then
arbitrary two nonholonomic Riemann metrics on (M, V) are equivalent.

Metric on homogeneous nilpotent Lie groups (G, V) are particular cases
of nonholonomic metrics. Every nonholonomic metric on such a group is ge-
nerated by a standard distribution on G and due to the fact that all standard
distributions belong to one orbit with respect to the action of automorphisms
group Aut G, arbitrary two nonholonomic metrics on G can be transformed
into each other by some automorphism. Let’s describe the properties of non-
holonomic metrics on such groups.

PROPOSITION 8.4. Assume (G, V) is a nonholonomic nilpotent homogeneous
Lie group; Py is a nonholonomic left-invariant metric on (G, V), {Ht} — group
of quasihomogeneous dilatation, acting on G. Then the following statements
are true:

1) For arbitrary nonholonomic geodesic v on G, Ht7 is also a nonholonomic
geodesic.

2) For arbitrary two points x, y €G

pyHx, Hy) =1p,x ¥)

3) Balls 2V (x) (and correspondingly spheres S‘:(x)) form “quasihomogene-
ous” families of sets, i.e.

H, @Z(x) =9 It/e (Hx)

and
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V _ |4
H SYx)= SV (Hx)

8. APPROXIMATION OF A GERM OF A NONHOLONOMIC RIEMANN MANI-
FOLD

Assume M is a Riemann manifold, ¥V and V are two germs of regular distri-
butions in the point x € M. We’ll say that the germs ¥ and ¥ have tangency
of order j in the point x, if ya = i e J"VV = JiVI7. The tangency
of distributions ¥ and V¥ lead to closeness of the correspondent nonholonomic
metrics p,, and Py

PROPOSITION 8.1. Assume M is a germ of a Riemann manifold, x €M ; V
and ¥V are germs of regular and completely nonholonomic distributions, that
have tangency of order j > 0 in the point x.

Then the following inclusions are true:

(1-0@* ' N2Fx)c2Vmca+oEy 27x).

Here by a multiplication of a ball and a number we understand the multi-
plication in the sense of linear structure, generated by arbitrary map on M,
The above given asymptotics does not depend on the choice of the map, and
is exact.

Due to the fact that every regular and completely nonholonomic distribution
V'  has tangency of order O with its principal quasihomogeneous part V(O),
we obtain the following statement.

COROLLARY . Assume (M, V) isa germ of a nonholonomic Riemann manifold
in some point x; V() isa principal quasihomogeneous part of V. Then the
following inclusions are true:

The germ of a nonholonomic manifold (M, ¥°)) ina point x can be iden-
tified with the germ of a nonholonomic nilpotent Lie group (Gx, Vx) (see
6). Nonholonomic metric on (M, V) induces left-invariant Carnot-Caratheodory
metric on the osculating Lie group (Gx, Vx ). Together with the statement
that Carnot-Caratheodory metric on (G, V.) is quasihomogeneous, this leads
to the following theorem.

THEOREM 8.2. Assume (M, V) is a germ of a nonholonomic Riemann mani-
fold in some point x, (Gx, Vx) is as osculating nonholonomic nilpotent Lie
group, 9% — a unit ball with the center in the identity element of G (in the
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sense of Carnot-Caratheodory metric). Them the following inclusions are true:
(1 —O0NHPD CDVx)C(1+0€))HD

Remark. Calculating the ball 2 on a nilpotent homogeneous Lie group is in
itself an interesting non-trivial probiem. For the simplest case that is three dimen-
sional Heisenberg group the precise form of & is given in [20].

The above theorem together with the following statement allows to obtain
an estimate of the e-ball @’:(x) in the sense of Carnot-Caratheodory metrics.

PROPOSITION 8.3. A unit ball in the sense of Carnot-Caratheodory metric has
a non empty interior in the Riemann topology (i.e. topologies, generated by the
original Riemann metric and by Carnot-Caratheodory metric, coincide).

Let’s give an estimate for @:’(x) for small €. Assume {xi ‘M-sR,
i=1,...,n} isa coordinate system in some neighbourhood of the point x.
Define a parallelepiped Hc,e(x) for ¢ > 0 and sufficiently small positive €
by a formula

O, ) ={yeM| |x,(y)—xx)|<cevD}

THEOREM 8.4, (On a parallelepiped [23]). Assume (M, V) is a germ of a non-
holonomic Riemann manifold in a point X, {xi};’=1 is a coordinate system
on M consistent with the distribution ¥. Then there exist ¢ >0 and C>0
such that for any sufficiently small positive € the following inclusions take
place:

M (x)CP/x)C, (x)

9. HAUSDORFF DIMENSION OF NONHOLONOMIC MANIFOLD

Assume G is a nilpotent homogeneous k-step Lie group, V a standard
distribution on G, {ni}i.‘zl — growth vector of V. By a homogeneous dimen-
sion we’ll understand a value dVG, defined by a formula

k
dyG=) jn—n_)
j=1

Let’s present an interpretation of this notion. Assume a Haar measure is defined
on the group G. Then, as the following statement shows, homogeneous di-
mension is an exponent, expressing the change of volume in the process of dila-
tation.

PROPOSITION 9.1. Assume (G, V) is a nonholonomic nilpotent homogeneous
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Lie group, p-Haar measure on G, X C G. Then
wHX) =t - p(x)

The quasihomogeneous character of the family of nonholonomic balls (in
the sense of Carnot-Caratheodory metric) allows to interpret d,G asa Haus-
dorff dimension of the metric space (G, pV).

PROPOSITION 9.2. [10). Hausdorff dimension of a nonholonomic nilpotent
Lie group (G, pV) coincides with its homogeneous dimension.

The above-mentioned results about the possibility to approximate a germ of
Carnot-Caratheodory metric on a nonholonomic manifold by a metric on the
germ of osculating Lie group lead to the conlcusion that the corresponding
Hausdorff dimensions coincide. So we have obtained the following statement.

THEOREM 9.3. Assume (M, V) is a nonholonomic manifoid; {n'.}:‘:I — isa
growth vector of the distribution V. Then for every Riemann metric on M
Hausdorff dimension dVM of a‘nonholonomic manifold (M, V) is given by

the following formula

k
d,M= )" j o —n ).
j=1

10. FOUNDATIONS OF NILPOTENT ANALYSIS

Main notions of analysis on nonholonomic manifolds can be naturally for-
mulated in terms of a bundle of nilpotent Lie algebras. In the present paragraph
we’ll discuss the simplest notions — those of first and second differential, Hessian
and critical point.

By a differential dw of a mapping o : (M, V) —> (/171, V) of nonholonomic
manifolds we understand a morphism of bundle of nilpotent Lie algebras
g VM - 5 VM (this definition was introduced in 3). In particular, a differen-
tial of a function f on a nonholonomic manifold: M, V) — (]Rl, TlRl) is
a morphism of a bundle of Lie algebras g, M into the trivial bundle R! x R!
of commutative l-dimensional Lie algebras. Therefore the morphism df annihi-
lates the bundle of commutants { gVM, gVM] and hence determines a mapping

df: V=g, M/ g,M 8, M- R
So we obtain the following statement.

PROPOSITION 10.1. The set of differentials of functions on a nonholonomic
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manifold (M, V) is naturally isomorphic to the codistribution ¥V *.
Another (equivalent) way to construct the space of differential is to interpret
them as elements of .///1 //[2 ; this interpretation leads to the same result, because

MM =V

Assume f is a function on a nonholonomic manifold (M, V). A point x €M
is called a critical point for f, if df(x) = 0. This definition of a critical point
can be evidently reformulated.

PROPOSITION 10.2. A point x isa critical point of a function f ona nonholo-
nomic manifold iff x is a critical point for the restriction of f to arbitrary
admissible curve, containing x.

In the critical point x of the mappint (M, V) —» (R!, TIR!) of nonholonomic
manifolds one can define the second differential as follows. Choose some neigh-
bourhood U of a point x €M, and choose a coordinate system in U, that
is consistent with the distribution V. Define d?f:

flH,y)

d*f(y) = lim
t—0
where Ht is the dilatation.

PROPOSITION 10.3. 1) The second differential of a function is correctly defined
for arbitrary function, for which x is a critical point, i.e. for fC #7 the equa-
lity d2f =0 is equivalent to the inclusion fe/l’;.

2) The space of second differentials of all functions, for which the point
x is critical, can be naturally identified with /l’z‘/ﬂ’;

Arbitrary element of & ;/Jﬂ’g can be considered as a sum of a quadratic
form on V* and an element of (V2/V1 )*. In case we use a coordinate system,
consistent with the distribution V, in the neighbourhood of the critical point
x € (M, V) then in that point dzf equals to the sum of a quadratic from of

the coordinates x.,. .., x and the linear form of the coordinates x,

1 n, , H1

Lo, X .
n,

We want to define a Hessian of a function f on a nonholonomic manifold

(M, V). 1t is natural to say that a Hessian is positive definite if the second deri-

vative of f along arbitrary admissible vector field is positive. Assume {Ei}'.’l

i=1
is a basic of module of admissible vector fields. Define
n

£= )

i=1
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Due to the fact that the point x is critical, we obtain Sif: 0.
The condition that £2f> 0 for arbitrary {e.}":  leads to

ili=1

Zl (Ei EJ. ) al.a]. > 0.

=1

This means that the symmetric matrix Ai]. = 1/2 (EiEJ. + gj‘g’i)f(x) is positive
definite. These arguments motivate the following definition.

DEFINITION. Assume f is a function, defined on a germ (in point x) of some
nonholonomic manifold (M, V), x is a critical point of f; El, - ,En is
a basic of the module of admissible vector fields. By a Hessian of a function

f we understand the following noxn matrix

1 1
Aii = _2— (Eiéj + E]El)f: (E,E] - ?[Ei’ E]] )f

PROPOSITION 10.4. A Hessian of.the function f defined on a nonholonomic
manifold (M, V'), in its a critical point x, does not depend on the choice of a
basis of the admissible vector fields.

A critical point of a function f: (M, V) — (]Rl, TR') is called nondegenecrate,
if its Hessian is nondegenerate. Alike classical Morse theory, one can introduce
the notion of an index of a critical point. The natural further development of
this paragraph should be the construction of nonholonomic Morse theory. How-
ever, the size of the present survey does not allow that, and this theory will be
the subject of a separate publication.

Part I Nonholonomic Riemann geometry
and differential operators

11. HAMILTON AND LAGRANGE FORMALISMS MIXED BUNDLE

Assume (M, V) is a nonholonomic Riemann manifold, we suppose that
the metric tensor g, is extended to the whole tangent bundle. By a Hamil-
tonian H on (M, V) we understand a 2-tensor on TM defined by the formula

H({w) =g, v) for vEV

H@w)=0 for ver?t
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Identifying TM and T*M, we can assume that H is a 2-tensor on T*M
and consider a Hamilton system (7*M, 2, H) where §2 isa standard symplectic
structure on T*M.

PROPOSITION 11.1. (Hamilton formulation). The corresponding dynamical
system with a degenerate Hamiltonian H determines a nonholonomic geodesic
AQ flow on T*M.

Remark. This A g flow does not depend on the concrete extension of metric
tensor to TM.

Let’s now turn to a description of Lagrange formalism.

Centaurus. A nonholonomic geodesic is a solution of a conditional variational
problem with nonholonomic constraints, expressed by V. Due to the fact that
arbitrary two points of a nonholonomic manifold (M, V) can be connected
by a nonholonomic geodesic, the initial data for such a geodesic must include
n = dim M parateters; n; = dim V' parameters correspond to the initial admis-
sible velocity vector v € V(x), one have to interpret the other (n — nl) para-
meters; due to (n — "1) = dim V' it is natural to interpret them as a 1-form
w € V1 C T*M. This l-form is an invariant way to write down Lagrange multi-
pliers (“corresponding” to the conditional variational problem). Therefore in
order to describe the nonholonomic geodesic flow we must consider the direct
sum ¥V & V!t of the distribution V C TM and its annihilator V* C T*M. We’ll
call this sum a mixed bundle, or a centaurus. .

PROPOSITION 11.2 (Lagrange formulation). Euler-Lagrange equations of the
conditional variational problem on a nonholonomic manifold determine a flow
on the mixed bundle ¥ @ V*. Nonholonomic geodesic equations are of the
following form:

0
V 4= — w—v_Jdw
7 ot

(Here v Jdw isa l-form such that for vector field §: (y dw) & = w(v, §).

Classical Legendre transformations for a nondegenerate quadratic Hamilto-
nian allow to identity tangent and cotangent bundles. In our case we can identify
T*M and V ® V* as follows: VX C T*M, and (F*)' and V can be identified
by means of Legendre transformation. Here we can again see that the # g —
flow is uniquely determined by the metric on V (independently on its extension).

The advantage of Hamilton approach to nonholonomic case is that all usual
Hamilton structures remain true (reduction, a notion of integrable and so on).
At the same time its drawback (that is closely connected with its advantage)
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is that the specific features of nonholonomity are masked by the possibility
to consider degenerate Hamiltonians, so that it is not possible to distinguish
between integrable and completely nonholonomic distributions — while La-
grange formalism distinguishes these cases.

Lagrange (“centaurus”) approach is more closely connected with classical
Lagrange method, it is more geometrical (e.g. this language is more convenient
for discussing questions, connected with conjugate points, wave fronts etc.,
see 15and [17]) .

12. NONHOLONOMIC GEODESIC EQUATIONS IN ORTHOGONAL FRAME

Assume (M, V) is a germ of a nonholonomic manifold in a point x. Let’s
choose the following basis of n vector fields on M:

1) assume El, e, Snl is an orthonormed basis for the distribution V.
are already constructed, and form an orthonormed
SO

2) assume £, ..., &,
basis for V;. Complete this list by adding vector fields §

that we obtain the orthonormed basis for V'.+ 1
We’ll call such a basis orthogonal frame of a nonholonomic manifold.

Let’s choose a basis {w,}i_ | of 1-forms, dual to {£}7 .

Assume v is a nonholonomic geodesic, then the admissible vector 7y can

ni+1""’gni+1

be represented in the form

n

r= Z: vit;
=1
any 1-form w from V* isa linear combination of S

By C:J. we denote structural functions of the set of vector fields {&):

(Cl’.]. is a function on the manifold M). By I’é}. we denote Kristoffel symbols,
determined by a Riemann metric on M:

I _
Fij - <Vs]~ ‘Ei £I>
In the orthogonal frame El ey En the nonholonomic geodesic equations
take, the following form.

PROPOSITION 12.1. Assume (M, V) is a germ of a nonholonomic manifold
in some point X, {Si};'zl an orthogonal frame on (M, V). Then nonholonomic
geodesics are determined by the following equations
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n
=) vk
=1
) = Z i — Z ! i =
(12.D) J I Cl oy Lovp, i=1,....m
1<i<n, 1<lj<n,
n <j<n
= ,- D rluy =
)xi Z C”ul)\].+ I‘ijvlvj i=n +1,...,n
1<i<n, 1<jl<nm
n <j<n

For most interesting cases (for distributions of maximal growth, for Lie groups,
especially for nilpotent homogeneous Lie groups) nonholonomic geodesic equa-
tions are essentially simpler. For the above-mentioned cases the simplified equa-
tions are presented in [17]. Here we consider only the case of nilpotent homo-
geneous Lie groups.

PROPOSITION 12.2. Assume (G, V) is a germ of a nilpotent nonholonomic Lie
group, {Ei}?zl is an orthogonal left-invariant frame on this nonholonomic
Lie group, i its structural constants. Then the nonholonomic geodesic
v on (G, V) is determined by the following system of equations:

n ~

Y= RIS
i=1

b = 5B, . .

(122) vi Z Cﬂ vl)\l’ l—l,...,nl,

i<i<n,
n,<j<n

\ = Z g 7. ) =

)\t Cil Ul )\I 1 nl +1’ , N
1<li<n,

e()=p(D+1

As we have already seen (in 8), the germ of a nonholonomic manifold can
be approximated by the germ (M, V(O)), that, in its turn, is isomorphic to the
germ of osculating nonholonomic nilpotent Lie group (G, ¥.). Let’s describe
the connection between nonholonomic geodesic equations for (M, V) and
for (G, V,).

If {Ei} is an orthogonal frame on (M, V) then main quasihomogeneous
parts {Eg‘l)} of its elements form a left-invariant orthogonal frame on the
germ of the nonholonomic Lie group (M, V(O)) ~ (Gx Vx). Structural
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constants C'. of the frame

ij £

{ 1‘ )} are connected with the structural functions
Cl{j(y) of the original frame {zl} as follows:

L) if o D =o (i ,
(13.3) A ) iteO=e O +e ()
Y 0, else
Gf @ (D>, 0) +w ) then cL =0 and 2§ =0).

Remark that the expression Kristoffel symbols in terms of structural constants
show that

1
ol ~1
FI.]. (C +C’ +Ci)=0

for {S('l)} frame.
Let’s call the procedure of transformation structure function CI] to structural
constant d by using the formula (13.3) a “freezing of coefficients” procedure.

PROPOSITION 12.3 (on freezing of coefficients). Assume (M, V) is a germ in
point x of a nonholonomic manifold, V) isa germ of the principal part of
V in the same point. Then the equations of nonholonomic geodesics on
M, V(O)) o (Gx, Vx) (osculating Lie group) can be obtained from the equations
for (M, V) by a “freezing of coefficients” procedure.

The geodesic equations on (M, V) and (M, V(O)) are close to each other in
the metrical sense:

PROPOSITION 12.4. Assume v and v are nonholonomic geodesics correspond-
ingly for the germs (M, V) and (M, V{°)) of nonholonomic manifolds, and
v and ¥ have the same initial data ({v,}"'1,, {)\l}] n 41 and {x }*1 is a coor-
dinate system on M consistent with the dlstrlbutlon V. Then the following
asymptotics is true for € > 0

| x;(v(€)) —xi(i(e))l =0(ev@*+Yy  i=1,...,n

13. REDUCTION THE A4g-FLOW ON HEISENBERG GROUP

Like a geodesic flow on the Lie group G, the Agflowon G admitsreduc-
tion, i.e. it is a skew product. Indeed, the mixed bundle over the nonholonomic
Lie group (G, V) is a direct product G x (ve v'), where v isa linear subspace
of the Lie algebra g , determining the left-invariant distribution ¥V, and vt
is the annihilator of subspace v in a coalgebra g*. In this case every ortho-
gonal frame {Ei} for Lie group is induced by orthogonal frame {g} in the



NONHOLONOMIC MANIFOLDS AND NILPOTENT ANALYSIS 437

nonholonomic Lie algebra, and due to the fact that for Lie groups the last two
groups of equations in (13.1) have constant coefficients, they determine the
flow on v ® vt.

PROPOSITION 13.1 (on reduction of Ag-flows). Assume (G, V) is a nonholo-
nomic Lie group. Then a A g-flow on its mixed bundle G x (v © v') isa skew
product with base v ® v and band G. The flow on the base is determined
by the last two groups of equations from (13.1), the flow in the band — by the
equation

n
Yy ly= Z vk,

i=1

The flow on the base v @ vt posesses an integral, namely energy integral
(¥, ¥> = const, i.e.

n
Z v} = const.
=1

This integral allows to select the family of invariant “cylinders” S, x vt C ux vt

Let’s turn to consideration the simplest example of A g-flow — a flow on
the 3-dimensional Heisenberg group, choose an orthogonal frame in the 3-dimen-
sional Heisenberg algebra Af3: El, 52, 53, where 53 lies in the center of ~/V3,
v=_Lin{§ 6 &} and &, = [£,, &,]. It is possible to choose such metric, for
which this frame is orthogonal, because any other metric can be transformed
to this one by means of some automorphism of the group (see 8). Energy con-
servation leads to v% + v% = const.

Changing (if necessary) parametrization on nonholonomic geodesics, we can
assume, that tyis constant equals to 1. So we can introduce a new parameter ¢
so that v, = cos ¢, v, = sin ¢. The equations on the level surface of energy
interval S* x R! = {(p, M)} take the form

p =X\
A=0.
So projections of nonholonomic geodesics on the base of the fibre bundle are

either circles v, = cos (¢ + ¢,), v, =sin (¢ + ¢,) or points v
We’ll call them correspondingly geodesics of I and II type.

L =650, =Cy.

Heisenberg group, when viewed on as a topological space, coincides with
IR?. One can choose the orthogonal frame, consisting of the following vector
fields:
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; X, 0 : 0 X, 0 g 0
= — 4 = — s = - = —
! 2 ox 2 ox 2 ox 3

1 3 2 3
Second type geodesics are left shift of one-parametric subgroup with admissible
generators of Heisenberg group.
The equation in the band for I-type geodesic:

7'1’.7=005(7\f+ap0).§1 +sin (At + ) &,

can also be simply solved, and thus we obtain the following description of a
A g-flow on Heisenberg group.

PROPOSITION 13.3. For the nonholonomic Heisenberg group geodesics of first
type are cylindric spirals, whose axes are arbitrary left shifts of the froup center.
Geodesic of second type are left shifts of 1-parametric subgroups with admis-
sible generators.

The Ag-flow on compact homogeneous spaces of Heisenberg group — is a
somewhat more interesting object. Let’s present a qualitative description of
such flows.

PROPOSITION 13.3. There are two classes of nonholonomic geodesics on a com-
pact homogeneous space of a 3-dimensional Heisenberg groups:

1) curves, everywhere dense in 2-dimensional tors;

2) circles.

The set of initial data of the geodesics of I-class has measure 1, initial data
corresponding to I1 class are everywhere dense.

In [17] geodesic flows on compact homogeneous spaces of N, is described
in more detail. The same paper contains a description of 4g flows for all 3-
dimensional Lie groups and their compact homogeneous spaces. Here we’ll
analyses only A#g-flow on the compact homogeneous space of group SLle.
The reason is that this case turns out to be the most interesting — just like in
the classical case.

14, NONHOLONOMIC GEODESIC FLOW ON SL,R.
CONNECTION WITH THE CLASSICAL GEODESIC FLOW

In classical (holonomic) case the most interesting of geodesic flows are the
flows on compact manifolds of negative curvature. The simplest example of
such manifold is a homogeneous space of SL2 R.

Choose the following basis Ny M,, My in the Lie algebra slle.
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O A R IR I
n, = , o, = , My =
Ylrooo 221 o o -

Arbitrary nonholonomic 2-dimensional left-invariant distribution is generated
by a plane v Cs,R such that v + [v, v] = sl,IR. We’ll call such a plane non-
holonomic.

PROPOSITION 14.1. Arbitrary nonholomorphic plane v C sl R can be transfor-
med by an automorphism of Lie algebra slle into one of the following two
planes:

a) orthohyperbolic plane

0 o
vl =Lin(n, +n,, 0 —n2)=;(6 O)IOt,ﬁER

b) orthoelliptic plane

o« B
( )|a,[3€R
B -«

v? = Lin(n,,m) =

Let’s call the basis {nl +my,m — nz} of the plane v! (and the basis {ny,n}
of the plane v?) appointed basis. Let’s now describe metric tensors on nonho-
lonomic planes in Lie algebra s/, IR.

PROPOSITION 14.2. The orbits of metric tensors on v! (v?) with respect to
automorphisms group of a nonholonomic algebra Aut (sl2 R, vl) (resp.
Aut (s, IR, v?)) can be parametrized by positive reals R . For arbitrary m >0
this orbit contains the tensor g, , whose matrix in the appointed basis is
m 0

( 0 1 )

Detailed investigation of A g-flows on all compact homogeneous spaces of
SL2]R is held in [19]. Here we’ll describe only one of such cases. We’ll consider
only restrictions of the A g-flow to the invariant set, that is singled out by the

condition | v [[= 1 on nonholonomic geodesic (see 13). This set is a bundle
with base $' x R! and band SL,IR.

THEOREM 14.3. Assume % 1is a compact homogeneous space of Lie group
SL2 IR, and a metric tensor 8, m#* 1, is given. Then:

1) All the trajectories are closed on the cylinder St x R! (except two fixed
points and four separatrices, connecting those points),

2) almost all ergodic components of a A" g-flow are 4-dimensional manifolds;
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every such component is a x &2, where « isa closed curve belonging to a base
S' xR,

Let’s connect this Ng-flow with a well-kknown geodesic flow on the planes of
constant negative curvature. Assume is a 4-dimensional ergodic component
of the A g-flow. This flow determines a l-parametric subgroup {Tt} onax 2.
Denote by 7 the period of the closed curve «. and consider the cascade {T i T};; 1
For any x € a the set x x &, are invariant components with respect to this
cascade. On each of this components the mapping T coincides with the shift
Lg of a homogeneous space & by some element g € SLZIR. By Floquet
theorem we must take one and the same element g for all points x € «. In
case the conditions of theorem 12.3 are true then g € SLZIR is hyperbolic.
Therefore the cascade {7, } coincides with the cascade of the classical geodesic
flow {Rt} on the homogeneous space & . It turns out that trajectories of a
N'gflow on ergodic components o x 2 are winding around the trajectories
of the flow /d x R, on x x PCax 9.

Complete investigation of A g-flow on SL2]R is given in [19]);in [17] descrip-
tion of A g-flows for all 3-dimensional nonholonomic Lie groups and their
compact homogeneous spaces is given.

15. NONHOLONOMIC EXPONENTIAL MAPPING. SINGULARITIES OF
NONHOLONOMIC WAVE FRONTS

Assume (M, V) is a nonholonomic manifold. By a wave e-front with point
x as a center, we mean the set of end points of nonholonomic geodesics of
length €, starting in x. We denote this e-front by A’E/(x). (Some authors
use another name for AZ(x) — geodesic e-sphere). For Riemann manifolds
wave e-front coincides with e-sphere for sufficiently small €. In nonholonomic
case these sets are different. We’ll describe the wave front for the simplest case
— three-dimensional nonholonomic Lie groups.

First define a nonholonomic exponential mapping exp’:(v, w) asa mapping,
transforming ¢ € IR! into the end point of the nonholonomic geodesic, starting
from x with initial data (v, w) C S1 X Vtx), where S1 C V(x) is a unit sphere.
A wave front is equal to the image of the cylinder S, x V1 with respect to this
nonholonomic exponent: 4 (x) = exp *(S; x V*).

For example, for a 3-dimensional Lie group we obtain that
AZ(G) = exp i(S1 x IR'). We xant to describe singularities of this exponential
mapping expj. Consider first a 3-dimensional Heisenberg group N3. Let’s
realize this group as R? (see 13).

PROPOSITION 15.1. [20]. (On wave front of Heisenberg group).
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1. The circles € on S' x R' ={(p, N)}, corresponding to A, = 2mn/e,
n==+1,%2,...,are transformed by the nonholonomic exponential mapping
into the points ©, = (0, 0, €’ /4wn) belonging to the center of Ny

2. In every point (-)n the wave front AZ(?) has a conic singularity (i.e.
the germ of the wave front A’:(e) inany point © , n ==%1,£2,. . isdiffeo-
morphic to the germ of the circular cone in 0 € R?.

The nonholonomic exponential mapping of the cylinder S' x R! to Ai(e)
is schematically depicted in Fig. 1. The wave front AZ(e) is a collection of
beads, in the center of the Heisenberg group. These beads can be enume-
rated: by integers: n-th bead B is the image of the cylinder
S x [2an, 2m(n + 1)] if n >0, and of S* x [27(n — 1), 27n} if n < 0. A

zeroth bead B, is the image of the cylinder S' x [~ 2w 27); B, coincides

0
with the nonholonomic e-sphere SZ(e), i.e.

S:/(e) = exp? (S' x [— 27, 27)).

From the formula for G)n one can see that all the beads lie inside B0 ; the
beads Bn condense themselves to the unit element of the group as [ n | - oo(see

Fig. 1) (compare with [41]).

THEOREM 15.3. (on singularities of wave fronts).

For all 3-dimensional nonholonomic Lie groups the wave front A‘:(e) is
for small € diffeomorphic to the wave front of Heisenberg group.

More detailed exposition, as well as the proof of all these statements, are
given in [20]. Methods of this work allow to descript singularities of wave fronts
for multidimensional nonholonomic Heisenberg groups with arbitrary left-in-
variant metric. These singularities are calculated by the same methods as for
dim = 3, althoug multidimensional calculations are more technically compli-
cated. For other groups with dim > 3 singularities are not yet calculated. Also
nothing is known about singularities of wave fronts of nonholonomic Riemann
manifolds (of course, except the case when they are locally isomorphic to non-
holonomic groups). Even the case of contact structure in R? with arbitrary
metric is not yet investigated.

16. NONHOLONOMIC LAPLACIAN

With every Riemann metric on a smooth manifold M an elliptic operator
is naturally associated — the Laplace-Beltrami operator A; vice versa, every elliptic
operator of second order determines a Riemann metric on the manifold. We’ll
show that a likewise result is true for nonholonomic manifolds (M, V): namely,
with every positive definite quadratic form on the distribution V' a hypoelliptic
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operator A, is naturally associated; it is natural to call this operator Laplacian,
or Laplace-Beltrami operator of the nonholonomic manifold. We give three
equivalent definitions of the operator A, that are likewise to three classical
definition of A.

a) Assume M is a germ of a Riemannian manifold in some point x € M,
U-open neighbourhood of x, 51, e, En — orthonormed frame of vector fields
in U. The germ A ] U of the operator A is given by a formula

b=-) ¢

i=1

For a germ of a nonholonomic Riemann manifold (M, V) it is natural to
define the germ of AV by a likewise formula

n

Asz Ei2

i=1

where {§;}72, is an orthogonal frame of vector fields for distribution V. Due
to the fact that distribution ¥V is completely nonholonomic, the conditions
of Hermander’s theorem on sum of squares are fulfilled (see [37]) and we obtain
the following statement.

THEOREM 16.1. Assume (M, V) is a nonholonomic Riemann manifold. Then
AV is a hypoelliptic operator.
b) Laplace-Beltrami operator can be also defined by a formula

— AU =div grad U.

In order to transfer this formula to a nonholonomic case denote
gradV = PV grad where PV : TM - V is the orthogonal projector on ¥, and
dz’vV = diy - PV.

PROPOSITION 16.2. Assume (M, V) is a nonholonomic manifold. Then
A, =div, grad .

This statement shows that AV does not depend on the concrete choice of the
orthogonal frame; this propositions allows to define AV for the whole mani-
fold.

¢) The operator A can be also defined by means of a differential complex:
A= db + 5d (see e.g. [38]). Denote d, = PVd and 6V =a&P,.

PROPOSITION 16.3.
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A, = dV5V +8,d,

Remarks 1. These definitions of A, can be applied also in case when the
distribution ¥ is not completely nonholonomic. For example, if V is integra-
ble, it determine a foliation ¥~ on the manifold M then AV determines a
family of Laplacians on fibres of ¥,

2. Assume V' isanorthogonal completionto ¥ in TM. Then A = A, +4,L

We’ll say that two distributions V, W commute, if there exist such orthogonal
lases { £, } and {\,l/].} correspondingly for distributions V" and W that (&, ‘,D].] =0
for all i and j.

PROPOSITION 16.4. If distributions ¥V and V* on a manifold M commute,
that the operators AV, AVl, A commute with each other.
In this case Laplacian AV has the same set of eigenfunctions as operator A.
Example. Assume G is a 2-step nilpotent Lie group, V — canonical distri-
bution on G. Then A, and A commute. In particular, Laplacian A, ofa
contact structure commutes with A.

17. HOPF-ALEXANDROV THEOREM

Classical Hopf theorem (see e.g. {34]) states that on closed manifolds there
are no harmonic functions (i.e. solutions of the equation AU = 0, that are
different from constants.

Let’s call a function U on a nonholonomic manifold (M, V) V-harmonic,
or hypoharmonic, if AVU = 0 A.D. Alexandrov proved the following genera-
lization of Hopf theorem to the nonholonomic case.

THEOREM 17.1. (On hypoharmonic functions). Assume (M, V) is a closed
nonholonomic Riemann manifold. Then every hypoharmonic function on M
is constant.

Let’s give a short proof of this theorem, that follow the classical example
and at the same time demonstrates the use of nonholonomic technique. Calculate

A, (f*)=div P, grad f* = div P, 2f grad f =

=div 2f grad, [ ={grad,, f, grad,, [+ 2f A f
In case f is hypoharmonic, we obtain

(grad , f, grad,, f) = div grad,, 2

Due to Green thcorem (see c.g. [34])
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0= / div grad, f* dm = / (grad,, f, grad,, f) dm
M M

(here dm is a Riemann measure on M). Therefore PVgradf= 0, ie.grad f
is orthogonal to the distribution V therefore f remains constant along arbi-
trary admissible curve in M. According to Rashevsky-Chow theorem (see 7)
every pair of points from M can be connected by an admissible curve. There-
fore f is constant on M.

Remark. This theorem can be easily modified to the case when the distri-
bution V is not completely nonholonomic (see [3, 22]).

Another proof of this theorem can be obtained from Alexandrov’s maximum
principle for hypoharmonic functions.

THEOREM 17.2. (Alexandrov’s maximum principle). Assume a hypoharmonic
function is defined on some open domain U. Then it cannot have maximum
inside U.

Summarizing: The subspace of hypoharmonic functions is onedimensional
and includes only constants.

18. NONHOLONOMIC GREEN FORMULA

Assume (M, V) is a nonholonomic Riemann manifold, dm — Riemann mea-
sure on M.
Then the following analogue of Green formula is true.

PROPOSITION 18.1. Assume (M, V) is a nonholonomic Riemann manifold.
Then the following formulas are true:
1) operator A, is selfadjoint in L2 (M), ie.

fwAVudm:f uAdem,
M M

2) / ul, wdm =/ (grad, u, grad, w) dm
M M

Formulas 1.2 show that AV is a positive definite selfadjoint operator.
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PROPOSITION 18.2. (Metivier {2]). Assume (M, V) is a nonholonomic compact

Riemann manifold. Then the operator A has a positive discrete spectrum.

14

Denote the elements of this spectrum by 7\1/ < )\;_/ < ... It turns out that the
asymptotics of this spectrum depends only on its principal quasihomogeneous
part and, therefore, the problem of finding this asymptotics can be reduced to

the same problem for nilpotent Lie groups (for details see 19).

19. PRINCIPAL QUASIHOMOGENEOUS PART OF THE NONHOLONOMIC
LAPLACIAN

Some preliminary definitions are necessary.

Assume (M, V) is a germ of a nonholonomic manifold in some point x,
N-growth vector of the distribution V. The filtration, induced by the vector
N on the Lie algebra JX Vect of jets of vector fields (see 5, 6) can be naturally
extended to its universal envelopping algebra %N. The corresponding graduation

allows to represent %

v as a direct sum of quasihomogeneous component

where @/ is generated by monomials

amx oMn
xbo oo oxtn o
! 7 X x™Mn

that satisfy the condition

n

Y U-m)e, =)

i=1

By p; we denote the projector p; : Uy =@ 9’ on i-th component of this

sum. The above-mentioned filtration consists of qu = @ 9*' The action
izj

of the group of quasihomogeneous dilatations can be naturally extended to

U y -
In these terms nonholonomic Laplacian
n
— 2
b=y
i=1

belongs to ”Zl_z C %N. By a principal quasihomogeneous part of the Lapla-
cian we’ll understand the operator p_, AV € 9 7% Let’s denote it by AL(,O).
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PROPOSITION 19.1. Assume (M, V) is a germ of a nonholonomic manifold
in some point Xx, o _a germ (in point x) of a distribution, that is a principal
quasihomogeneous part of a distribution V. Then A{®) = A, (o).

So the principal quasihomogeneous part of Laplacian in point x of a non-
holonomic manifold can be naturally interpreted as a nonholonomic Laplacian
on the germ of an osculating Lie group (Gx , Vx) = (M, y0)y,

So it is necessary to investigate properties of nonholonomic Laplacians on
homogéneous nilpotent Lie groups G. The action {Hr} of the quasihomoge-
neous dilatations group on Lie group G induces its action on the space £?(G)
of measurable functions on G with integrable square. Namely, for f € £2%(G)
we assume that

(H f)x =f(Hx).

We denote quasihomogeneous dilatations on #2(G) by ﬁt in order to
distinguish them from dilatations of differential operators; for which we preserve
the denotation Ht.

PROPOSITION 19.2. Assume (G, V) is a nilpotent nonholonomic Lie group,
and a left-invariant metric is given. Then the following formulas are true:

1] 77 2
D H_3 A H =14,
__ 42
2) HA, =1724,

(e. (HADNx =172, f)x).

Let’s now turn to spectrs and spectral functions. Remind (see e.g. [35]) that
the spectral function e(x, y, A) of a self-adjoint operator A is a Kernel of
its spectral projector A(_w Ay In case of a discrete spectrum e(x, ¥, A) can
be expressed as follows. Assume Sp AV = {7\{/ < 7\;/ < ...} isan ordered
set of eigenvalues of the operator A, and { f] }]"_';_ is an orthonormed set of

1
correspondent eigenfunctions.

ey M=) [

jﬁ)\

>

(In case we consider several operators, we’ll point out whose spectral function
in considered by explicitly indicating this operator eg. e, ,(x,y,\) or
e, (x, ¥, M.

PROPOSITION 19.3. Assume (G, V) is a nilpotent nonholonomic Lie group,
Ay -Laplacian on (G, V); then the spectral function eAV(x, v, A) satisfies
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the following conditions:
1) e, V(x, x, A) does not depend on x

2) eAV(e, e, n*A) = eHﬁlAVHn(e’ e, \)

The first property is fulfilled for all left invariant operators on a Lie group,
because then left shift of an eigenfunction by an element of the group is also
an eigenfunction, with the same eigenvalue.

The next result of Metiver reduces the calculation of asymptotics of a spectral
function e(x, x, A) for a nonholonomic Riemann manifold (M, V) to the
group case.

THEOREM 19.3. [2]. Assume (M, V) is a germ of a nonholonomijc Riemann
manifold in some point x, V) the principal part of ¥ in the point x. Then

eAV(x, x, A) )\:w e, 0) (x, x, A).

I.e. asymptotics of €, (x, x,»A) is the same as for the spectral function
of the Laplacian of the osculating Lie group.

In order to find this asymptotics we make the following definition. By NA )
we denote the total number of eigenvalues of operator 4 that do not exceed
A. The function N can be expressed in terms of a spectral function on a compact
manifold by a formula.

NA N = / €4 (x, x, Ny dm
M

Quasihomoneneous character of the spectral functions allows to show that
for compact homogeneous space of a nilpotent nonholonomic Lie group (G, V)
the function NA . has the following asymptotics:

N (A ~ Vol G- Adv/2
by ) A=+ = Pg 4
where dV is a homogeneous (Hausdorff) dimension of G, VOIVG its Haar
volume and the constant p . (we’ll call it density) depend on the group G.
(We’ll investigate this characteristic in the next point). In these terms Metivier’s
theorem can be reformulated as follows.

THEOREM 19.4. Assume (M, V) is a germ of a nonholonomic Riemann manifold
in some point Xx, AV is a nonholonomic Laplacian on (M, V) and e, V(x, x, \)
its spectral function. Then the following limit exists
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A11'm N AVi2 ox, x, \) = Pg
where dV is a Hausdorff dimension of the nonholonomic manifold (M, V),
G, is a osculating nilpotent Lie group.

It is therefore natural to expect that the asymptotic formula for NAV()\)
can be generalized to the case of nonholonomic Riemann manifolds; in this
generalization Haar measure on a group G must be changed to a measure on
a nonholonomic Riemann manifold constructed by means of densities PG,
(see 20) definding on osculating Lie groups, where Haar measure on Gx is in-
duced by Riemann measure on M.

20. HYPOTHESIS ON MAIN PRINCIPAL IN WEYL FORMULA FOR NON-
HOLONOMIC LAPLACIAN

For Laplacian on the Riemann compact manifold M the asymptotics of eigen-
values growth is given by the classical Weyl formula (see for example [35]):

N, V= ) 1~Cy VolM- NP (140 (1)
A<
where d = dim M, is the dimension of M, Vol M is Riemann volume of M
and ¢; is the constant depending only on dimension of M. Metivier’s theorem
allows to present the principal term of asymptotics for the spectrum of the non-
holonomic Laplacian on a compact nonholonomic manifold (M, V) in the
following form:

(20.1) Ny, ) =C, SMVIZ(1 40 (1))

M, V)

where dV is the Hausdorff dimension of the nonholonomic manifold (M, V)
and

C(M, ) =/ PGxdm
M

where d_ = is the Riemann measure on M, Pq, is the density on osculating
Lie group G, (see 19). So

(20.2) N, )= (/ rg dm)y\dV/Z (1 +o (1))
M

It is natural to define a nonholonomic volume of a compact nonholonomic
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manifold (M, V) as

/ PG, d,-
M

THEOREM 20.1. Let (M, V) be a nonholonomic Riemann manifold, AV be
the nonholonomic Laplacian on (M, V). Then the spectrum of AV has the
following asymptotics

NAVO\) ~ VolVM~?\dV/2

A= oo

Let’s turn to the interpretation of the density PG - Let (G, V) be a non-
holonomic nilpotent Lie group. AV — the nonholonomic Laplacian on G
and £(¢) be the diffusion Markov process on G with initial state #(0) = ¢
and generator AV. Denote by p,(x, ¥) probability density of the transition
from x to y during time ¢. This density is calculated with respect to Haar
measure on the osculating Lie group Gx. In particular pt(e, e) means the
probability density of returning to the unit e € G during time ¢.

PROPOSITION 20.2. For small ¢ the density pt(e, e) has the following asymp-
totics:

ple e)=pg, - "IV (1 + 1)

where pG, — density for Lie group Gy.

The proof of proposition is standard. So the problem about principal term of
generalized Weyl’s formula is reduced to (nilpotent) group case. For the simplest
nilpotent groups this problem was solved by Gaveau [5]. We shall return to the
question elsewhere (*),
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