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INTRODUCTION

We shall use the term “nilpotent analysis” as a synonym of the longer expres-

sion “analysis on smooth manifolds with completely nonintegrableregular di-

stributions”, i.e. analysis on nonholonomic manifolds (the origin of the word

“nilpotent” in the presentcontext will be explained later). This subjectincludes

geometryof these distributions, the basic notionsof analysison nonholonomic

manifolds (differentials, Hessians,singular points), dynamic systems,generated

by nonholonomic geodesic flows, metric problems, nonholonomic Riemann

geometryand the theory of differential and pseudodifferentialoperators(spec-

tral problemsfor hypoelliptic operators,hypoelliptic diffusion, hypohyperbolic

operatorsetc.). The collection of thesetopics constitutesthe subjectof the pre-

sent paper. This survey (aswell as numerousother papers[l-l5~) shows that
this topic is closely connectedwith singularity theory, random walks, control

theory, Riemannian geometry, partial differential equationstheory and some
otherregionsof mathematics.

Do not include historical questions in the presentsurvey, therefore we do

not mention earlier works, referring the interestedreaderto the historicalsurvey

in [17]. Severalproblemsfrom natural sciencemust be also mentionedamong

the sourcesof the presenttheory, such as mechanicaland optical nonholonomic

problems,optimalcontrol, quantizationof systemswith constraints.

The roleof nilpotent algebrasandLie groupsin this theoryhasbeenrepeatedly

mentioned;however, this role wasrevealedonly in the simplestcases.We ascribe
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categorial sense to these structures. Completely nonholonomic distribution

induces an equivalentstructureof homogeneousnilpotent Lie algebrason the

band of the tangent bundle (nilpotentization). It turns out that systematicuse

of this structureallows to expose(in a uniform manner)a lot of resultsobtained

earlier approximation theoremfor nonholonomic c-ball, principal term theorem

for Weyl formulasfor hypoelliptic operatorsetc).

Consequentuse of the bundle of nilpotent Lie algebrasleadsto a revision
of main notions of analysis,starting with such notionsas differential, critical

point etc. Note that the analogy with superanalysis,that seemsnatural at first

sight, is not completelyprecise,becausenilpotent analysisis basedon a different

generalizationof standardcommutativeanalysissuperanalysisrevisesthe notion

of a variable,while nilpotent analysisrevisesthe notion of ajet (i.e.derivatives).

The simplest and most investigatedcaseof nonholonomicmanifolds is the case

of contact structures,where Heisenbergalgebraplays the role of the nilpotent

algebra.However,evenfor this casemetrical andvariationalproblemsarepoorly

investigated.
The presentpaperdoesnot pretendto be a completeexpositionof nonholo-

nomic analysis,we consideronly asa convenientinstrumentfor solvingproblems

from nonholonomicgeometry.The contentsof this papercan be seenfrom the

above titles of points. The first part is devoted to the consequentexposition

of the main notionsof analysison nonholonomicmanifolds: geometryof distri-

butions (1), constructionof the bundle of nonholonomic Lie algebrason non-

holonomic manifolds (2); necessaryinformation about the homogeneousnil-

potent Lie algebrasand their classification(3). In 5 and 6 we describea graded

Lie algebra of vector fields jets on a nonholonomic manifold; before that we
preparea formal model, necessaryfor that description (4). In 7-9 we explain

the questions,connectedwith nonholonomic Riemannmetric; in 7 its definition

is given, in 8 asymptoticsof c-ballsis described,in 9 formula for the Hausdorff

dimension of a nonholonomic manifold is given. The last (10) of this part is

devotedto the exposition of basicnotionsof nilpotent analysis(first andsecond

differentials of a function on a nonholonomic manifold, critical point, nonholo-

nomic Hessian).

The beginningof a secondpast(11-15) is devotedto nonholonomicRiemann

geometry and to dynamical systems,generatedby a nonholonomic geodesic

flow. In 11 a Hamilton formalism is presented,that allows to define a flow

in the contangent bundle, and a Lagrangeformalism, defining a flow in the

“Centaurus” — a mixed distribution, that is a direct sum of the original distri-

bution and the codistribution, that is its annihilator in the cotangentbundle.

Nonholonomic geodesic equationsare given (1 2). Reductionof nonholonomic

geodesic (.A
Tg) flow of Lie groups is described,and complete description of
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.A’~-flowsis given for the simplest case— the flow on 3-dimensionalHeisenberg

group (13). The ergodictheoremfor a .ATg-flow on SL
2IR is given (14), andthe

description of singularities of non-holonomic wave fronts for 3-dimensional

Lie groupsis given in 15.
The remaining paragraphsof this part aredevotedto thequestions,connected

with nonholonomic Laplacian: its definition is given in 16, a theoremon hypo-

harmonic functions — in 17, nonholonomic Green formula — in 18. The last

two paragraphs(19-21) are connectedwith formulating a conjectureaboutthe

main term in Weyl formula for nonholonomicLaplacian: in 19 the main quasi-

homogeneouspast of a nonholonomic Laplacian is constructed,and Metivier

theorem about asymptoticsof spectral function is given; in 20 the connection

betweenthe asymptotic behaviour of eigenvalues’ growth and non-holonomic

diffusion is given.

The presentsurvey is summarizingthe earlier papersby the authors [1 6-25]

but the present exposition is independenton that works and it containsnew

results.It containsalso a systematicexpositionof a new apparatuswhich allows

to review both the new and recent results from the unique point of view. The

authorsare new working further paperson nilpotent analysisand problemsof

nonholonomic geometry. Note that our referencelist is in no sensecomplete,

becauseit cannotbe madecomplete without abnormal increaseof its volume;

referencesin the text arealsosometimesnot complete.

The authors are happy to dedicatethis paperto 75-th anniversaryof Izrail

MoiseevichGel’fand, a remarkablescientist,thinker, teacherof mathematicians.

whose personality and whose talent attract attention and causegreat interest

of mathematiciansof different countries,specializationsandages.

Part I Nilpotent analysis

1. DISTRIBUTIONS’ GROWTH VECTOR

By a distribution V on a smooth manifold M one understandsa smooth

subbundle V = { V(x), x E M} of a tangentbundle TM. A vector field ~ on
M is called admissiblewith respectto the distribution V if ~(x) E V(x) for

arbitrarypoint x EM.

For every point x E M constructa chain V(x) = V1(x) C l/2(x) C . . . of

linear spacesin a tangentspace T~M defining J
7

1(x) as a linearenvelopeof all

the values (in this point x) of vector fields, that can be representedby Lie bra-

ckets of length ~ i, of admissible vector fields. So V2 = , V1 ], . . .

V1 = [V11, V1]. By a growth vector of a distribution V in the point x we

denotea sequenceof integers { n~(x)}, where n(x) = dim l/1(x). Will call the
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distribution regular, if for every i the function n
1(x) is constanton thewhole

manifold M. For regular distributions the set of linear spaces { V1(x), x EM

forms a distribution V. on M. This chain of distributions V1 C V2 C.. . will
be called a Lie flag of a regular distribution. (In the presentpaperby a distri-

bution we’ll understandregular distributions — except several cases,when the

oppositewill be explicitely stated.In orderto investigatenonregulardistributions

one needsa new notion of a differential system, more generalthan the one

usedin thepresentpaper,see[17]).

We’ll call a distribution completely nonholonomic, if, starting from some

the equality V. = TM is true. The smallestsuch i0 is calledthe nonholono-

mity degreeof the distribution V; usually~will denotethis degreeby k = kv.

On the set of all growth vectors a natural partial ordering can be defined:
n

1” } > { n~}, if for all i inequalities nb” ~ nk~aretrue. Thereforewe canspeak

about the maximal element in the set of all growth vectors, correspondingto

distributions of givendimensionin lR’~.

The notion of regularity, completenonholonomity etc, already defined for
distributions, can be naturally transferred to germsandjetsof distributions. In

particular, germs of regular distributions admit the following characterization.

PROPOSITION 1.1. A germ (jet) of a distribution V in a point x EM is regular

iff the module, formed by germs(jets) of V-admissiblevector fields, is free over

the ring of germs(respectivelyjets)of smoothfunctionson M.

Growth vector is one of the main characteristicsof distribution. Let’s first

describegermsof distributions of maximal growth. By S~ we denotethe set

of all germsof rn-dimensionaldistributions in thepoint 0 E lR~.

THEOREM 1.2. 1. All distributions of maximal growth from Sr”’ haveoneand

the samegrowthvector (henceoneandthesamenonholonomitydegree).

2. The components { i1
1 } of the maximal growth vector from S~ up to

the k = nonholonomity degreecoincide with the dimensionsgrowth of homo-

geneouscomponentin free Lie algebrawith rn generators,i.e. the following

formula is true:

11= dim

where = / and ~ / is anj-th homogeneouscomponentof the free

Lie algebra g with m generators.

Let’s denote nonholonomity degreeof a distribution of maximal growth

from S~ by knm~Due to theorem 1.2 one can calculate knm usingawell-

known formula for the dimensions of homogeneouscomponentsof free Lie

algebrawith m~n, generators(see,e.g.[26]):
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(1.1) ~ —~ 1 = — ji(d) fl~/d

I d/j

This formula showsthat for fixed n
1 the dimension ~i. of j-th component

hasthe following asymptotics(n1 = iii):

nil
n. —

and therefore for fixed m we obtain the following asymptotics describing

how nonholonomitydegreegrowswith n:

k -~ log n.
n,m m

n -.

One can identify the set S
tm with the set of germsof sectionsof the trivial

bundle
~l: U-÷[I xGrm

n

where U is a germ in 0 E IR’~,Gr~ is a Grassmanmanifold of rn-dimensional

planesin IR’5 . This identificationsallows to define a structureof infinite-dimen-

sional manifold on S~ namely a manifold on which Whitney C~-topology

is defined (for its definition see e.g. [27]). Typical distribution germsare descri-

bedas follows.

THEOREM 1 .3. Distributions of maximal growth form an openeverywheredense

subsetof S~ in the senseof Whitney’s C~-topology.

COROLLARY. A germ of a distribution V E Stm in 0 E TR’~ that hasmaximal

growth in 0, is regularandcompletelynonholonomic.

For degeneratedistributions two groups of problemsarize. The first one is

connected with distributions, whose growth is less than maximal in isolated
point, while in the neighbourhoodof this point the distribution hasa maximal

growth. Theseproblems include descriptionof degenerationsof small codimen-

sions of their stratifications, possibility of somenormal form for jets of such

distributions etc.Someof theseproblemsareanalysedin [24].

The secondgroup consistsof problems,connectedwith regulardistributions

of non-maximal growth. Codimensionality of the set of such distributions in

S~ is . In this caseadequatecalculationsof dimensionsand codimensions

must be organized in terms of functional modules — their total number, the

number of variables in them. Due to pagelimit we haveno possibility to deal

with these problems in the present survey, therefore we refer the interested
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readerto the paper[21].

We also want to point out a specialand very important branchof the theory

of regular distributions of nonmaximal growth namely, investigatingleft-inva-

riant distributions on Lie groups (or their homogeneousspaces).In this case

the distribution V = V(x),x E G } is uniquely determinedby a linear subspace
of a Lie algebra g = TeG and so the set of such distributions is finite - dimen-

sional. Here such problemsarise as describingmaximal growth for various types

of Lie groups,and describingstratification of degenerations.The authorsdo not

know any publicationsdevotedto theseproblems.

2. NILPOTENTIZATION (*)

By a nonholonomic(smooth)manifold we’ll understanda pair (M, V), where

M is a smooth manifold, V — a regular and completelynonholonomicdistri-

bution on M (cf. 1). Nonholonomic manifolds form a category(we’ll denote

it by. .A~t) where morphisms (M
1, V1) —* (M2, V2) are smooth mappings

of manifolds M1 ~. M2 transforming one distribution into another. Every

smooth manifold M can be considerasnonholonomicwith V = TM, so the

category of smooth manifolds can be consideredas a full subcategoryof the

category.JV’N . Another important subcategoryof ,.A’iIf is a category.iVG

of nonholonomic Lie groupe, whose objects are pairs (G, V), where G is a

Lie group, and V-left-invariant completelynonholonomicdistribution
on G. Local versionsof categories~4”~# and .iVG can be naturally defined:

namely, the categories of germs of nonyolonomic smooth manifolds and of

nonholonomic local Lie groups. Due to classicalLie theorem (see,e.g. [26]),

that establishescorrespondencebetween local nonholonomic Lie groups and

nonholonomic Lie algebras,the objects of this category are pairs ( g , u ),
where ~ is.a Lie algebra, u - a linear subspaceof g , generating u as a Lie

algebra.

Our goal is to prove the following theorem.

THEOREM. The regular distribution on a smoothmanifold M define thecanoni-

cal bundle of nilpotent homogeneousLie algebras ~ ~,M = {~J~} over M.

Remark. This bundle can be identified noncanonicallywith tangent bundle

TM (see7). The identification is any point: TM ~ is uniqueup to anauto-

morphismof nonholonomicLie algebras ~
The theoremis basedon the following construction.Let us introducethevec-

to space

=~ V1(x)/V11(x).

(*) See[42].
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LEMMA. The following definition of Lie bracketsis correct.Denote

V,= V
1(x)/V1(x),

~ E V. we’ll denotethe imageof ~ in V5 by ~. For arbitrary ~ E V. and

~i E V. we define a Lie bracketby a formula

[~,~] = [~] E ~

where ~, ,Li arerepresentativesof ~ and \L/ in V1 and V1 correspondently.

We’ll say that the ideal of relations in a graded Lie algebrais homogeneous,

if together with arbitrary element it contains all its homogeneouscomponents.

Nilpotent Lie algebras ~ form a bundleover M; we’ll denoteit by ~~M.

We’ll say that a nilpotent Lie algebra is homogeneousif it is a factoralgebraof

a free algebraover thehomogeneousideal.

Summarizingall that we obtain thefollowing statement.

PROPOSITION 2.1. Tangent bundle of a nonholonomic manifold (M, V) has

a canonic structureof a bundle of homogeneousnilpotent Lie algebras g

so that morphismof nonholonomic manifolds p (M, V) —~ (M, V) corresponds

to morphism of bundles ~ 1,,M~s.~ The bundle of Lie algebras g

over a nonholonomic manifold (M, V) allows to constructa bundle of non-

holonomic Lie groups GYM, whosebandsareLie groups G, corresponding

to the algebra ~ We’ll say that this group G is an osculatingLie group

of a nonholonornicmanifold (M, V) in a point x.

Bundle morphism d~p‘ ~ M—~ ~ will be called adifferential of a map-

ping p of nonholonomic manifolds. The differential d~ is a homomorphism

of Lie algebras ~ -~ on dvery band,a homomorphism,smoothly

dependingon a point x of a manifold.

Note that over for different points x of the manifold correspondingLie

algebras ~ havethe saniedimensionsvector (formedby dimensionsof homo-

geneouscomponents),but, generally speaking,they arenot isomorphic, in other

words, ~ ~,M is not a locally trivial bundle of Lie algegrasover M. In view

of this fact the notion of smooth dependenceon the point x E M needssome
comment.

Let U be a sufficiently small neighbourhoodof a point x Let’s fix a trivia-

lization TU = U x IR°. Let’s considerall possiblenilpotent homogeneousLie
algebras,for which the underlying linear spacecoincideswith lR’

2, and growth

vector— with N. Denotethe setof all suchalgebrasby NuN.

PROPOSITION 2.2. Germs of nonholonomic manifolds with givengrowth vector

havea structure of infinite-dimensional smooth manifold, that can be naturally
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identified with the manifold of germsof smoothsections U -÷ U x NuN.

This identification allows to speakabout smoothdependenceof the above-

constructedLie algebras g andtheir homomorphismsetc.on thepoint x EM.

In (3) the set NuN will be analysedin more detail, andin thepresentpoint we

restrict ourselvesto the descriptionof a bundle NuN -+ FiN where FIN is

a spaceof flagswith growth vector N.
Every nilpotent homogeneousLie algebra ~ E Nile defineson JR~ a flag

of subspacesW
1 C W2 C -

dim W1 = n1 whosemembersareelementsof naturalfiltration on IR~.Among

all such flags { w1} E FIN a canonicflag ~N ={ ~~-‘~‘ C lR’~’ C . . .} is naturally

selected.By NilN will denotethe setof all elementsof NuN with flag
17N~

PROPOSITION 2.3. Assume N = {n
1~L1 is a realizablegrowth vector. Then the

following statementsaretrue:

I. The manifold NiIN is a direct product

NilN = NUN x Fl~

2. F
1N is a homogeneousspaceof thegroup GL~ namely FiN = GL~I~1N

where ~N is a subgroup of blockwise uppertriangularmatriceswith blocks

of sizes

3. i~til~is an algebraicmanifoldof structuralconstants.

3. HOMOGENEOUS NILPOTENT LIE ALGEBRAS

Assume ~ is a homogeneousnilpotent Lie algebra with growth vector

N = {n
1}. The complementto [ ~, ~ ] in g is called a standard linear space,

and the correspondentleft-invariant distribution on Lie group ~ is called a

standarddistribution.

PROPOSITION3.1. 1) Automorphismsgroupof Lie algebra: g actstransitively

on the setof all standardsubspacesof9

2) For free k-stepfor everyk the following exact sequence

~

determinesthe factorizationof Aut g into thesemidirectproduct
Aut n = GL ,< lR~’X (fl - n,)

nI

The elements of the type (g; 0) correspondto automorphismsof standard

space.

Further on by a nilpotent nonholonomic Lie group we’ll alwaysunderstand

a nilpotent Lie groupwith a standarddistribution (of course,only in casesome

otherdistribution is not explicitly defined).
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A nilpotent homogeneousLie algebra, consideredas a linear space, can be

decomposedinto a direct sum of homogenepuscomponents

9 q1~~920 g~o...e
9k

where ~l+/ = [ ~, 91]. This decompositionallows to define on 9 a one-

parametric automorphismsgroup {ht}tE~ that is an imageof multiplicative

group IR* for the diagonalimbedding

ct 0
~ EAut~

0 ~a

Transformations h~ are called dilatations. Automorphism h~ coincides

with multiplication on t
1 on eachcomponent 91, andcanbe extendedto the

whole 9 by linearity.

For the following it is important to single out caseswhen the bundle ~

is locally trivial.

a) Distributions ofgeneralposition

Assume the germ of a distribution of dimensionaln
1 in M is of maximal

growth we’ll call the dimension M exact, if it coincideswith = dim ~ k

for some k, where ~ is a free Lie algebrawith n1 generators(cf. 1).

If the growth V is maximal and the dimension n is exact, then for every

x the algebra 9 is free nilpotent Lie algebraof k-tb stepwith n1 generators,

and thebundle ~ ~,,M is locally trivial.

In case the growth V is maximal, but dimension of M is not exact, Lie

algebras ~ ~ are, so to say, “free up to the last step”, that is, on this last step

nontrivial relationsarise,that dependon the point x E M. To be more precise,

let’s denote by B~- 1 a functor, that transformsa homogeneousnilpotent
k-step Lie algebra ~ into (k — 1)-stepLie algebrathat is obtainedfrom x~by

a factorization modulo the commutativeideal 9k~ This functor Bk 1 indu-

ces the functor on the bundle of nilpotent algebrason the manifold. These

considerationsmeanthat bundle — 9 is locally trivial. The germ of a bundle

~ for a distribution V with maximal growth vector can be not locally
trivial, if thereexist nonisomorphicLie algebrasin NuN.

Arbitrary algebra ~ C NuN can be viewedon asanimageof a free nilpotent

k-step Lie algebra ~ with respectto the homomorphism p : —* ~ such

that thediagram

9k-1 ~
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is commutative. So in this case the manifold NiIN can be identified with

H=Hom(lk~k-1,lR”’
2k-l) where =dim

The set of all classesof isomorphic algebrasfrom Nil~,,, can be identified

with H/GL JR x GL lR. So if

(3.1) n~+(n_nkl)2=dimGL~IR<dimH=(7i~k_nkl)(n_nkl)

then nonisomorphicalgebrasexist.

All theseconsiderationscanbe summarizedin the following statement.

PROPOSITION 1.3.2. Assume (M, V) is a germ of a nonholonomic manifold,

V is of maximalgrowth.Then:

a) In case the dimension of M is exact, then the bundle ~ ~,,M is locally

trivial.

b) In casethe dimensionof M is not exact, andthe inequality (3.1) is true,
thenthereexistsa germof anonholonomicmanifold (M, V) suchthat n= dim M,

n
1 = dim V andthebundle is not locally trivial.

Case (b) of this proposition is a most important case,in which the bundle

~ is not locally trivial.
Let’s now turn to other cases,when distributions arenot in generalposition,

but the bundle 9vM is locally trivial.

b) NonholonomicLie algebra

A tangentbundleover Lie group G is a direct product G x g of thatgroup
and its Lie algebra.Assume (G, u ) is a nonholonomicLie group, (g , u ) is

its nonholonomic Lie algebra.Let’s define a functor ~, that puts into corres-

pondenceto eachnonholonomicLie algebra (~ , o ) its nilpotenthomogeneous

Lie algebra:

Ui! Ui~1.

PROPOSITION 1 .3.3. The bundle G of nilpotent Lie algebrasovernonholo-

nomic Lie group (G, V) is trivial

= G x p (9 , U ).

Example. For arbitrary 3-dimensionalLie group G the bundle of nilpotent

Lie algebrasover G is isomorphic to G x n3 where n3 is a 3-dimensional

Heisenbergalgebra.

c) Casesthat canbe (locally) reducedto groupones

Let’s fix dimensions n of a manifold and n1 of a distribution. We want
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to find out for which (ii, n
1 ) the germ of a nonholonornicmanifold (JRT1, V),

where V is a distribution in generalposition, is isomorphicto a germof a non-

holonomicLie group.

The most important case(and at the sametime the simplest of such cases)is

that of contact manifolds (see, e.g. [28 ]). In this casethe germ of (lR’
1, V)

in every point is isomorphic to the germ of a nonholonomicHeisengerggroup

N
21~1’ where 21 + I = n. Thereforethegerm of a bundle ~ ~

2l+ 1 is trivial

becausefor germ of contactmanifolds; 9 v~21~1 = U x 1 where U

isa germof jp,2l+ 1 .JV (2/ + 1)-dimensionalHeisenbergalgebra.

1. Note that in the nongroup caseglobally the bundle ~ ~,M is generally

speakingnot trivial evenif it is locally isomorphicto a groupone,andthemani-

fold M is contractible.The simplest examplesof suchsituation arenonstandard

contactstructureson 1R3 (cf. [29]).

2. Besides contact structures, there exists only one case of dimensions

(n, n
1) = (.4, 2) when thegermof a distribution in generalposition is isomorphic

to a germ of left-invariant distribution on a Lie group (see [21]). In this case

the germ (1R
4 , V) is isomorphicto a germ (G, V), where G is a nilpotent

Lie group of degree 3 with 2 generators.Its Lie algebra is defined by the

basis ~ ~ ~ ~ and the following relations [~ ~2 ] = E

3] =

~~2’ ~3 ] = 0; ~ ~ ] = 0, i = 1,2,3.
(Distributions on this group were investigatedas far back as in Engel’s work

— in connectionwith partial differential equations,(see[6]) (*),

4. ALGEBRAIC MODEL OF A JET OF A NONHOLONOMIC MANIFOLD

In the presentpoint we describea gradedLie algebraof formal vector fields,

that servesasan algebraicmodel of Lie algebraof jets of vector fields on a non-

holonomicmanifold.

Let’s considerLie algebra ~ of formalvectorfields, definedas a module over

thering 1.~=JR [x1 xv]] with base {~!ax1, i = 1 n}. For growth

vector N = ~ 1 let’s define a function p~:2; n -÷1; k by setting

= for n1 1 <n1. Let’s define a graduationas thefollowing:

~ j=1,2,...

The correspondingfiltration in B is then definedby a chainof ideals

=
/ ~>—I

(*) Nilpotentization arisesmany interesting problemsconcerning distributions generated
by polynomialvectorfields, someof themwere discussedin [40].
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The ring B with filtration, determinedby agivengrowthvector,will be denoted

by BN. The following statementdescribesthe propertiesof this filtration.

PROPOSITION4.1.

1) RN/~z#l ~ll~l

2).#1/.f(2 ~ ~JRfl,

3) Denoteby B (j) thering of formal power set~esof the variables x,~1- 1’

x~., R(1) = lR[x~~1, . . . ,x,2]] by A’~ denotea maximal ideal

in B(1). Then the following equalitiesaretrue:

k
n R(1)

1= 1

(1). (k).

k 1 1{~‘~‘---“k~ z ij
j=1

Let’s define a function ord: BN-+N, as follows: for arbitrary p E

ord p = min{i p E .Jt}. We went to extend this function to the whole £~‘there-
by defining a filtration on 2’ It is sufficient to extendord to monomialsof the

type

cc1 x~ ±
that generate2’ asa linearspace.We defineord for suchmonomialsby a formula

ord (~?Zjx~i dr~ford(ñ x~~) ~

=( ~ l~~N(’)) ~

This extensionof ord to 2’ leadsto a graduation2” = Lin{p ord p = j}

anda filtration

i~/

a decreasingchain of linear subspacesof an algebra2’. Let’s denotea Lie al-
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gebra 2’ with filtration, correspondingto growth vector N by 2’s.

PROPOSITION 4.2.

1) ~k = ~ 1=-k

2) ~ is a subalgebraof the algebra 2’N

3) for every i>0 £f’ ison ideal in

Filtrations ~ and .~‘. are consistentin the sensethat .,~#.2’ C ~ -
j 5) l+J

and 2’.A~I~C 4~. (in the first casemultiplication meansmultiplying vector

field and a power series,in the secondcase— differentiating of the power series

alongthevector field jets).

In our algebraicmodel free n
1 -dimensionalsubmodulesof 2 play the role

of regular distributions (see 1); in fact, as we’ll see in the following point, it

is sufficient to consideronly thesubmodulesof

Let’s describepropertiesof such’ submodules.First of all introduce the flag

of a submodule v : = u, . . . , = [v1 1 v1 ] for i ~‘ 1. Define also the

flag of linearspacesV1 C V2 C . .. with Vk = IR’~, and

a a
V.=JR”i=Lun —

ax ax
1 nj

PROPOSITION 4.3. Let v C ~ be a free n1 -dimensionalsubmodule.Then

the following statementsaretrue:

I) v, C 2~ and = V1

k a a
2) v = .//I’V. where V. = Lin —

1=1 ax~+1 ax

Arbitrary automorphism of the graded ring RN (or of algebra
2N~ ~

uniquely defined by the linear transformationof x
1,..., xN. Let’s define

an action of dilatation group { h1 }, I C IR* on the ring RN and Lie algebra

h f(x1 , . . . , x) = f(~1, . ~ x5 , tkx)

a a i
h f(x1,. .. ,x) _ =f(tx1,.. . ,t”x~) — U)

Thefollowing proposition is evidently true.
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PROPOSITION 4.3. The group { h~} actsas multiplication by t
1 on everyhomo-

geneouscomponent~u#1,2”.
Remark. The Lie algebraof formal vector fields, i.e. algebra of formal diffe-

rential operatorsof first order, can be used to constructa universalenveloping

algebra ~1N of formal differential operatorsof arbitraryorderover the ring
B N both thegraduationandtheactionof group h~} canbe naturallyextended

to suchanalgebra.

5. QUASINORMALFORM

A regular distribution V on a manifold M allows for arbitrary x E M to

define a filtration on the ring of jets J~Mof smooth functionsand in the Lie

algebraof jets J, Vect of vector fieldsover that ring. This filtration is defined

by meansof a function oFd, whoseconstructionis alike Qrd in the algebraic

model (see4). Let’s define oid consequentlyextendingits domain of definition:

a) Forjets of admissiblevectorfieldsassume oFdE = —

b)Forvector field ~1iC V. \ V.
1 assumeord ~ = —i.

Definition of o7d for jets of functions from JM is basedon the following

statement.

PROPOSITION 5.1. Assume (M, V) is a nonholonomicmanifold, x EM. Then

for arbitrary fEJXM different from 0, thereexist vectorfields

~ EJ Vect suchthat
(~ .... .~f)(~) ~0

c) For fEJM, f~= 0, define old as:

o7df = mm — ~ or~d~.
Ill (11 E, f)(x )* o} 1=1

AssumeoVd O=+oo.

The abovedefined function old determinesa filtration ~ D ~ D . .

in the ring J~Mwherethe ideal

~‘={fE JMI old f ~i}.

d) For elementsof Lie algebra J, Vect the function ok! is defined as fol-

lows: for ~ EJ Vect

oI~d\1/=max{jI V.i~i.~-#.C~-#.~.}

andthe correspondingfiltration is
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= {~i EJ Vectl ~

Remark. Filtrations ./F/. and U. areuniquely determinedby thecorrespon-

dent graduations,fI’ and u~. Thesegraduationscan be describeddirectly,

although such descriptionis somewhatcumbersome.We’ll now describea quasi-

normal form theorem, that allows to obtain thesedirect descriptionsby simple

trasferringthemfrom the algebraicmodel (see4):

Evidently the rings B N and J~M areisomorphicas abstractrings, and the

Lie algebras J, Vect and ..9~. over that rings are isomorphic. Such as iso-

morphism is established by choosing a jet of coordinatesystem in the point

x E M. We want to probe that, moreover,one can alwayschooseaspecialcoor-

dinate system,in which this isomorphismsof rings andalgebraspreservefiltration.

THEOREM 5.2. (on quasinormal form). Assume (M, V) is a germ of a nonho-

lonomic manifold in some point x, N is a growth vector of V. Then for ar-

bitrary isomorphism x between B N and JIM, consideredas abstractrings,

there exist an automorphism ~i : RN 1D such that x i,L is an isomorphism

of filtered rings.
This theoremadmits the following reformulation.

THEOREM 5.3. (on the quasinormalform of jets of nonholonomicdistributions).

Assume (M, V) is a germ of somenonholonomic manifold in a point x . Then

there exists a coordinatesystem { x~ M -+ IR’, i = 1 n } in someneigh-

bourhood of the point x, such that the jet of every admissiblevector field

lies in 2’_

We’ll call such coordinatesystemsconsistentwith thedistribution V. Note

that generally speaking, there exist different coordinate systems,consistent

with V.

COROLLARY [24]. Assume (M, V) is a germ of a nonholonomic manifold m

somepoint x, and the coordinatesystem is consistent with V. Then the jet

of arbitraryadmissiblevector field ~ hastLe following form:

= ~II~ ~ 1 [I x. ax.
S j—1 ~l+l

where S contains only setsof indices for which the following inequality is

true:

1 + ~1= 1
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We’ll call suchform of representationof admissiblevector fields quasinormal.

Theprefix “quasi” notesthat suchrepresentationis not unique.

Remark. Filtered isomorphism of rings and Lie algebras,that is induced by a

coordinatesystemconsistent with the distribution, allows to transfer to .J~M

and Vect graduationsfrom correspondingly RN and We’ll denote

the images of 2’’ that are obtained by this correspondence,also by 2’’.

This correspondenceallows also to define theactionof quasihomogeneousdilata-
tion groupto JM and Vect.

6. PRINCIPAL QUASIHOMOGENEOUS PART (AND QUASIJETS) OF THE

DISTRIBUTION

Assume (M, V) is a germ of some nonholonomic manifold, N = { n.}~,

growth vector of the distribution V;
2JV ~ Feet the Lie algebraof jets

of vectorfields in somepoint x E M. For i ~ — k let us denoteby p, the

projector

p.: = (/~k 2/) ~2”

For admissiblevector field ~ p,~= 0 if i < — 1. By a principalquasihomo-

geneouspart of an admissiblevector field ~ we’ll understand ~~l) = p

Let us introduceprojectorsP., i ~ — 1 where

= j~1 ~

Let us define i-quasijetsof admissiblevector fields ~ as I’VE = P
1~. So the

prmcipal quasihomogeneouspart of ~ is 0-quasijet of ~. By i-quasijet .1’~,V

of a distribution V we’ll understand the distribution V~j~generatedby

{J’,~,~}-i-quasijetsof admissiblevector fields; V~°~we’ll call a principal quasi-

homogeneouspart of adistribution V, i.e. 0-quasijetof V.

THEOREM 6.1. (on principal part of thedistribution).

Assume (M, V) is a germ of a nonholonomic manifold in some point x

and the distribution V~°~is a principal quasihomogeneouspart (0-quasijet)

of V. Then the germ of nonholonomic manifold (M, V~°~)is isomorphicto

thegermof osculatingnonholonomicLie group (G, V~)(see2).

Quasihomogeneouspart of admissible vector field has the following form
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1) = + ~ ~ ~ ~(~1~xi) ax~
‘i+ i} 1=1 ‘1+ 1

where

~~(i
1+1)=

If we choosebasein the set of all admissiblevector fields, thentheir principal

quasihomogeneouspartsform a basis for a Lie algebra 9,, andthe coefficients

determine structural constantsof that algebra. (The converse
is not true: structural constantsdo not determinethe coefficients p.

‘1+1

uniquely; this nonuniquenesscan be easily seen on the simplest example —

contactstructurein lR
3). Thereforea questionnaturallyarizes— how to choose

a basis of vector fields, and a consistent coordinatesystem,so that the set of

coefficients { ~ ~ ~+ } be maximally simple. It turns out that in the

most important case — that of distributions of maximal growth — the algebra

is close to beingfree, and our aim can be achieved.Let’s first describethe
simplest case— thecaseof exactdimensions.

Distribution of maximalgrowth in exactdimensions

In this casealgebra ~, is thefreenilpotent k-step Lie algebra ~k with
n

1 generators. Let’s remind the classical description of linear basis in

k (see[26]).

Assume gi~ is a free (noncommutative)monoid with n1 generators;denote

them by 01 , . . . , 0 . There existsa natural graduationin this monoid: ~‘

is aset of all wordsof length i. Denote

?~= ~

Let’s construct in ~ a subset ~ consequently defining components
~9i = g~~

1) ~ is a set of generators ~ °k Let’s order them arbitrarily,

anddenotethis orderingby >.

.2) ~2 is a setof pairs ~ ~ where ~ ~‘2 C 91 and ~ <~2

Let’s then orderarbitrarily all elementsof 92, andassumethat 9 1 ~ 2

3) Supposethat 91 9’, i ~ 2 are already constructed.Define 91+1

as subsetof 9 1+ 1 formed by such words ~l, that admit the uniquerepre-

sentationin the form ~ = ~I ~ ~,L13), where ~ i = 1, 2, 3} satisfy the
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following conditions:

a) ~ <(~2 h1~3)
b) ~2 <hl.’3
c) ~ ~“

Order 9 ~ arbitrarily, andassumethat 9~<91+ 1~

Sucha set 9 is called a Hall family in the free monoid with n
1 generators.

The choice of suchfamily is not unique,becauseonecanchoosearbitraryorder-

ing for eachof the “homogeneouscomponents” 9 ~. For further considerations

it will be convenientto supposethat somechoiceis fixed for every n1.

Assume g1,..., g~ is a setof generatorsof free Lie algebra~ . A mapping

v: ~ i= l,...,n1 canbeextendedtothemapping~ -+~,which

transformsevery word ~1iE 9 to the following elementsof ~ : ,,L’ E 9 can

be uniquely representedas a product of generators.Change every generator

0, in this product expressionto g1, and every round bracket to a Lie bracket.

THEOREM (Hall-Witt). The image of the subset 9 under the mapping r’ is a

homogeneousbasisof thefree Lie algebra9

This theorem shows that it is convenient to enumeratethe baseof vector

fields by the elementsof Hall family; formula (6.1) showsthat it alsoconvenient

to enumeratecoordinatesby the sameelements.So we arrive at the following

statement.

THEOREM 6.2. [24]. Assume (M, F) is a germ of a nonholonomic manifold

in somepoint x, distribution V is of maximal growth N = ~ andthe

dimension n = dim M is exact. Then there exists a coordinatesystemjet in

x, consistant with the distribution, in which the principal quasihomogeneous

parts of vector fields E® , ... , E0 forming the basefor V have the following

form:

a
ax~

wherethe subsetS includesall sets {~c,}~, satisfying the condition

= x,(x~~(. . .(x1 x0) ...)

(heremultiplication is understoodin thesenseof a freemonoid).
Remarks. I) For distributions of maximal growth the local trivial character

of the bundle of nilpotent Lie algebrasallows to obtain more preciseresults
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namely, one can obtain the canonicform not only for theprincipal quasihomo-

geneouspart, but for thesomeothercomponentsaswell, thusobtainingthenormal

form forjets of vector fields, see (24]
2) Theorem 6.2. can be extended to the case of distributions of maximal

growth and non exact dimension of a manifold, only slight modifications are

necessary,connectedwith the existenceof nontrivial relationson the last step

(see3).

7. CARNOT-CARATHEODORY METRIC

By a metric tensor on a nonholonomic manifold ~M, F) will understand

a positive definite symmetricquadratic form on the distribution V. If M is

a Riemann manifold, then such a form is essentiallyobtained by restricting

metric tensor to V, the inverseis also true, namely, every metric tensor on

V can beextendedto somemetric tensoron TM.
A nonholonomic manifold, equippedwith sucha quadraticform on V will

be calleda nonholonomicRiemannnanifold.

A curve ‘~‘: IR1 -+ M is calledadmissibleif it is amorphismof nonholonomic

manifolds (JR’ TIR1 ) -÷ (M, F). The existenceof positive definite tensoron

V allows to calculatelenghtsof admissiblecurves.

THEOREM 7.1. (Rashevsky,Chow [30, 31]). Assume (M, V) is a nonholonomic

Riemannmanifold. Then arbitrary two points x, y EM can be connectedby an

admissiblecurveof finite length.

A metric p~, can be naturally defined on a nonholonomic Riemannmani-

fold (M, F), in which a distancebetweenthe points x, y C M is defined as a

minimal length of all admissiblecurves,connectingx and y

pv(x, y) = ( g~(~(t),~(t))’12 dt
Szy Jo

where

~ ={‘y:(IR’, TIR1)-÷(M,~I -y(0)=x, ‘y(l)=y}.

This metric is called Carnot-Caratheodory metric.

By a nonholonomic geodesic we understandan admissiblecurve ‘y : JR1 —~-M

such that for arbitrary points x, y on y that are sufficiently closeto each
other, the length of the interval of ‘~‘, connecting those points, equals to

Pv(x, y).
Filippov’s lemma [32] allows to extend Hopf-Rinov theorem [33] to non-
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holonomicmanifolds:

THEOREM 7.2. For arbitrary two points x, y of a nonholonomicRiemann

manifold there existsa shortestnonholonomicgeodesic,connectingthem.

Remark. A specific featureof nonholonomic manifolds is that even for arbi-

trary close pairs of points there can exist several shortestgeodesics;in other

wordsthe setof point, conjugateto somepoint x C M, is not necessaryisola-

ted; it include submanifoldsof positive dimensions, that contain that point x

and its structure can be very complicated. The only thing one can guarantee

that for any nonholonomicgeodesic -y, ‘y is the uniqueshortestgeodesic,con-

nectingarbitrarysufficiently closepoints,belongingto ‘y.
Let’s denoteby ~ ~ (x) the c-ball in thesenseof thenonholonomicmetric

and by SF’(x) — the c-sphere.The following statement,establishesequiva-
lenceof different nonholonomicRiemannmetrics.

PROPOSITION7.3. Assume (M, F) is a germof a nonholonomicmanifold. Then

arbitrary two nonholonomicRiemannmetrics on (M, F) areequivalent.

Metric on homogeneousnilpotent Lie groups (G, V) are particular cases
of nonholonomic metrics. Every nonholonomic metric on such a groupis ge-

nerated by a standarddistribution on C and due to the fact that all standard

distributions belong to one orbit with respectto the action of automorphisms

group Aut G, arbitrary two nonholonomicmetricson G canbe transformed

into each other by some automorphism.Let’s describethe propertiesof non-

holonomic metricson suchgroups.

PROPOSITION 8.4. Assume (G, F) is a nonholonomicnilpotent homogeneous

Lie group; p~ is a nonholonomicleft-invariant metricon (G, F), {H~}— group

of quasihomogeneousdilatation, acting on G. Then the following statements

aretrue:
1) For arbitrarynonholonomicgeodesic‘y on G, H~7is alsoanonholonomic

geodesic.
2) For arbitrary two points x, y C G

P~(H
1x,Hey) = tp~(x,~

3) Balls ~ (x) (and correspondinglyspheres S~’(x))form “quasihomogene-

ous” familiesof sets,i.e.

H~~(x) = ~ ~‘(H~x)

and
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fJ~S~~’(x)=S~
7(H

1x)

8. APPROXIMATION OF A GERM OF A NONHOLONOMIC RIEMANN MANI-
FOLD

Assume M is a Riemannmanifold, V and V aretwo germsof regulardistri-

butions in the point x C M. We’ll say that the germs V and V havetangency

of order / in the point x, if V~’~= ~ i.e. V = J’1~,V. The tangency

of distributions V and V leadto closenessof thecorrespondentnonholononiic

metrics and p~.

PROPOSITION 8.1. Assume M is a germ of a Riemann manifold, x C M ; V

and V are germsof regular and completely nonholonomic distributions,that

havetangencyof order j ~ 0 in thepoint x.

Then the following inclusionsaretrue:

(1 _O( i))~x)C~V(x)C(l +O(c1~’)) ~

Here by a multiplication of a ball and a number we understandthe multi-

plication in the sense of linear structure, generatedby arbitrary map on M.
The above given asymptoticsdoesnot dependon the choice of the map, and

is exact.

Due to the fact that everyregularand completelynonholonomic distribution

V has tangencyof order 0 with its principal quasihomogeneouspart V~°
1,

we obtain the following statement.

COROLLARY. Assume (M, V) is a germ of a nonholonomicRiemannmanifold

in somepoint x; V’~°~is a principal quasihomogeneouspart of V. Then the

following inclusionsaretrue:

(1 — 0(e)) ‘~°~(~)C ~(x) C (1 + 0(e)) ~°~(x)

The germof a nonholonomicmanifold (M, V~°))in a point x canbeiden-
tified with the germ of a nonholonomic nilpotent Lie group (G, V) (see

6). Nonholonomicmetric on (M, F) inducesleft-invariantCarnot-Caratheodory

metric on the osculating Lie group (G, V). Togetherwith the statement

that Carnot-Caratheodorymetric on (G~.V~) is quasihomogeneous,this leads

to the following theorem.

THEOREM 8.2. Assume (M, F) is a germ of a nonholonomic Riemannmani-
fold in somepoint x; (G,, F,) is asosculatingnonholonomicnilpotent Lie

group, — a unit ball with the centerin the identity elementof G (in the
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senseof Carnot-Caratheodorymetric). Them the following inclusionsare true:

(I — 0(e))HQJ C ~ ‘~(x)C (1 + 0(e))H.~

Remark. Calculating the ball ~ on a nilpotent homogeneousLie groupis in
itself an interestingnon-trivial problem.For thesimplestcasethat is threedimen-

sionalHeisenberggroupthepreciseform of ~ is given in [20].

The above theorem together with the following statementallows to obtain

an estimateof the c-ball ~~(x) in the senseof Carnot-Caratheodorymetrics.

PROPOSITION 8.3. A unit ball in the senseof Carnot-Caratheodorymetric has

a non empty interior in the Riemanntopology (i.e. topologies,generatedby the

original Riemannmetric andby Carnot-Caratheoclorymetric, coincide).

Let’s give an estimate for ~~“(x) for small e. Assume { x
1 : M -÷JR’

= I n } is a coordinatesystem in someneighbourhoodof thepoint x.

Define a parallelepiped fl~�(x) for c > 0 and sufficiently small positive e

by a formula

Hc,�(x)={y EMI x,(y) —x1(x)l ~c e~v(’)}

THEOREM 8.4. (On a parallelepiped [23]). Assume (M, F) is a germof a non-

holonomic Riemannmanifold in a point x, {x1}~L1 is a coordinate system

on M consistentwith thedistribution V. Then there exist c > 0 and C> 0

such that for any sufficiently small positive c the following inclusions take

place:

Hce(x) C ~~‘(x) C Hc,e(x)

9. HAUSDORFF DIMENSION OF NONHOLONOMIC MANIFOLD

Assume C is a nilpotent homogeneousk-step Lie group, V a standard

distribution on C, {n,}~1 — growth vector of V. By a homogeneousdimen-
sion we’ll understanda valued~G,definedby aformula

d~G~ J(n~—~-~)

Let’s presentan interpretation of this notion. Assumea Haarmeasureis defined

on the group C. Then, as the following statementshows,homogeneousdi-

mensionis an exponent,expressingthe changeof volume in the processof dila-

tation.

PROPOSITION 9.1. Assume (C, F) is a nonholonomicnilpotent homogeneous
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Lie group, p-Haarmeasureon C, X C C. Then

p (HEX) = . p(x)

The quasihomogeneouscharacterof the family of nonholonomic balls (in

the senseof Carnot-Caratheodorymetric) allows to interpret d~C as a Haus-

dorff dimensionof themetric space(C, ~

PROPOSITION 9.2. [10]. Hausdorff dimension of a nonholonomic nilpotent

Lie group(C, ~ coincideswith its homogeneousdimension.

The above-mentionedresults about the possibility to approximatea germ of

Carnot-Caratheodorymetric on a nonholonomic manifold by a metric on the

germ of osculating Lie group lead to the conlcusion that the corresponding

Hausdorff dimensions coincide. So we have obtainedthe following statement.

THEOREM 9.3. Assume (M, F) is a nonholonomic manifold; {n,}~
1 — is a

growth vector of the distribution V. Then for every Riemannmetric on M

Hausdorff dimension d~M of a nonholonomic manifold (M, F) is given by

thefollowing formula

d~M= k

10.FOUNDATIONS OF NILPOTENT ANALYSIS

Main notions of analysis on nonholonomic manifolds can be naturally for-

mulated in terms of a bundleof nilpotent Lie algebras.In thepresentparagraph

we’ll discussthe simplest notions — thoseof first andseconddifferential, Hessian

andcritical point.

By a differential d of a mapping ~ : (M, F) -+ (M, F) of nonholonomic

manifolds we understanda morphismof bundleof nilpotent Lie algebras

M —~ 9 ~,M (this definition was introducedin 3). In particular, a differen-
tial of a function f on a nonholonomic manifold: (M, F) -÷ (IR’, TIR’) is

a morphism of a bundle of Lie algebras g ~M into the trivial bundle JR
1 x JR’

of commutative 1-dimensionalLie algebras.Thereforethemorphism df annihi-

lates thebundle of commutants [ q.
5~,M, 9vM] andhencedeterminesa mapping

df: V~ 9~M/[ 9vM, 9vM]_~’

So we obtain the following statement.

PROPOSITION 10.1. The set of differentials of functions on a nonholonornic
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manifold (M, V) is naturallyisomorphicto thecodistribution V*.

Another (equivalent)way to constructthe spaceof differential is to interpret
themas elementsof ~ ‘~2 ; this interpretationleadsto thesameresult, because

~1 ~2 V*

Assume f is a function on a nonholonomicmanifold (M, F). A point x EM

is called a critical point for f, if df(x) = 0. This definition of a critical point

can be evidently reformulated.

PROPOSITION 10.2. A point x is a critical point of a function f on anonholo-

nomic manifold iff x is a critical point for the restriction of f to arbitrary

admissiblecurve, containingx.

In the critical point x of the mappint (M, F) —* (IR1, TIR1) of nonholonomic

manifolds onecan define the seconddifferential as follows. Choosesomeneigh-

bourhood U of a point x C M, and choosea coordinatesystem in U, that

is consistentwith thedistribution V. Define d2f~

f(H
1y)

d
2f(y) = lim

t—~O t2

where H~is thedilatation.

PROPOSITION 10.3. 1) The seconddifferential of a function is correctly defined

for arbitrary function, for which x is a critical point, i.e. for fC .11~theequa-

lity d2f= 0 is equivalentto the inclusion fE.It~.

2) The spaceof second differentials of all functions, for which the point

x is critical, canbenaturally identified with .14’ ~

Arbitrary element of ./N~/Jf~can be consideredas a sum of a quadratic

form on V* and an elementof (V
2/V, )*~In casewe usea coordinatesystem,

consistent with the distribution V, in the neighbourhoodof the critical point

x C (M, V) then in that point d
2f equalsto the sum of a quadraticfrom of

the coordinates x x and the linear form of the coordinatesx1 n

1 n1+1
x

We want to define a Hessianof a function f on a nonholonomicmanifold

(M, V). It is naturalto say that a Hessianis positive definite if the secondderi-

vative of f along arbitrary admissiblevector field is positive.Assume { E,}~i,
is abasicof module of admissiblevector fields. Define

E=



432 V. GERSHKOV1CH, A. VERSHIK

Due to the fact that the point x is critical, we obtain ~
1f = 0.

The condition that E

2f> 0 for arbitrary { cw~}~1 leadsto

i,/= 1

This meansthat the symmetricmatrix A,
1 = 1/2 (E,E1 + E1E,)f(x) is positive

definite. Theseargumentsmotivate the following definition.

DEFINITION. Assume f is a function, defined on a germ (in point x) of some

nonholonomic manifold (M, F); x is a critical point of f, ~ ~ is

a basic of the module of admissiblevector fields. By a Hessianof a func’tion

f we understandthe following i~ x n1 matrix

1 1
A.. = — (E,E1 + ~1)f= E~E1— -~-[E,~E1] f

PROPOSITION 10.4. A Hessianof the function f defined on a nonholononiic

manifold (M, F), in its a critical point x, doesnot dependon thechoiceof a

basisof theadmissiblevector fields.

A critical point of a function f.~(M, V) -+ (IR’, TIR’ ) is callednondegencrate,

if its Hessianis nondegenerate.Alike classicalMorse theory, one can introduce

the notion of an index of a critical point. The natural further developmentof

this paragraphshould be the constructionof nonholonornicMorse theory. How-
ever, the size of the presentsurveydoesnot allow that, and this theory will be

the subjectof a separatepublication.

Part II NonholonomicRiemanngeometry
and differential operators

11.HAMILTON AND LAGRANGE FORMALISMS MIXED BUNDLE

Assume (M, F) is a nonholonomic Riemann manifold; we supposethat

the metric tensor is extendedto the whole tangentbundle. By a Hamil-

tonian H on (M, F) we understanda 2-tensoron TM definedby the formula

H(v)=g(v,v) for vCV

I-I(v)=0 for vCV’
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Identifying TM and T*M, we can assumethat H is a 2-tensoron T*M

and considera Hamilton system (T*M, ~, H) where ~ is a standardsymplectic

structureon T*M.

PROPOSITION 11 .1. (Hamilton formulation). The corresponding dynamical

system with a degenerateHamiltonian H determinesa nonholonomicgeodesic

jj( flow on T*M.

Remark. This .iV g flow doesnot dependon theconcreteextensionof metric

tensorto TM.
Let’s now turn to adescriptionof Lagrangeformalism.

Centaurus.A nonholonomicgeodesicis a solution of a conditional variational

problem with nonholonomic constraints,expressedby V. Due to the fact that

arbitrary two points of a nonholonomic manifold (M, F) can be connected

by a nonholonomic geodesic,the initial data for such a geodesicmust include

n = dim M parateters; n
1 = dim V parameterscorrespondto the initial admis-

sible velocity vector v C V(x), one have to interpret the other (n — n1) para-

meters;due to (n — n1) = dim Ft it is naturalto interpret them asa 1-form

w C V’ C T*M. This 1-form is an invariantway to write down Lagrangemulti-

pliers (“corresponding” to the conditional variational problem). Therefore in
order to describethe nonholonomicgeodesicflow we must considerthe direct

sum V a V’ of the distribution V C TM andits annihilator V
1 C T*M. We’ll

call this sum a mixedbundle, or acentaurus.

PROPOSITION 11.2 (Lagrange formulation). Euler-Lagrange equationsof the

conditional variational problem on a nonholonomic manifold determinea flow
on the mixed bundle V a V’. Nonholonomic geodesicequationsare of the

following form:

a
~7y=—w—’yldw
~ at

(Here ~‘ I dw is a I-form such that for vector field E: (‘y I dw) E = w(~, E).
Classical Legendre transformationsfor a nondegeneratequadraticHamilto-

nian allow to identity tangentandcotangentbundles.In our casewe can identify

T*M and V a V~ as follows: V’ C T*M, and (V’)1 and V can beidentified

by means of Legendre transformation. Here we can again see that the .h’ g —

flow is uniquelydeterminedby themetric on V (independentlyon its extension).
The advantageof Hamilton approachto nonholonomic caseis that all usual

Hamilton structures remain true (reduction, a notion of integrable and so on).

At the same time its drawback (that is closely connectedwith its advantage)
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is that the specific features of nonholonomity are masked by the possibility

to consider degenerateHamiltonians, so that it is not possibleto distinguish

between integrable and completely nonholonomic distributions — while La-
grangeformalismdistinguishesthesecases.

Lagrange (“centaurus”) approach is more closely connected with classical

Lagrangemethod, it is more geometrical(e.g. this languageis more convenient

for discussing questions, connected with conjugate points, wave fronts etc.,

see 15 and[17])

12. NONHOLONOMIC GEODESIC EQUATIONS IN ORTHOGONAL FRAME

Assume (M, V) is a germ of a nonholonomic manifold in a point x. Let’s

choose the following basisof n vector fieldson M:

I) assume E ~ En, is an orthonormed basis for the distribution V.

2) assume . . , En, are already constructed,and form an orthonormed

basis for V~. Complete this list by addingvector fields ~ , . . . , ~ so

that we obtaintheorthonormedbasisfor V,~,.

We’ll call sucha basisorthogonalframe of a nonholonomicmanifold.

Let’s chooseabasis ~w,}~L1 of 1-forms,dual to { E,}~,1
Assume ~ is a nonholonomicgeodesic,then the admissiblevector y can

berepresentedin the form

v.~.

any 1-form w from V
1 is a linear combinationof Wn + 1’ ,

By C~,we denotestructuralfunctionsof the setof v~ctorfields
= ([E~~E~1,~?

(C~. is a function on the manifold M). By F~. we denoteKristoffel symbols,

determinedby a Riemannmetric on M:

= <V~ E. E,)

In the orthogonal frame E
1~. . . , E~ the nonholonomicgeodesicequations

take, the following form.

PROPOSITION 12.1. Assume (M, F) is a germ of a nonholonomic manifold

in somepoint x, {E,}~..1 an orthogonalframeon (M, F). Thennonholonomic

geodesicsaredeterminedby the following equations
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v~.

(12.1) v
1= C~1u,X1— ~ i= 1,...,n1

1~l~n, l~l,j’~n,
fl, <j’~n

Xj= ~ C~1v1~+ ~ F~.v1v. in1 +1,...,n
1~j,l~n1

n, <j~n

For most interestingcases(for distributionsof maximalgrowth,for Lie groups,

especially for nilpotent homogeneousLie groups)nonholonomicgeodesicequa-

tions are essentiallysimpler. For the above-mentionedcasesthe simplified equa-

tions are presentedin [17]. Here we consideronly the caseof nilpotent homo-

geneousLie groups.

PROPOSITION 12.2. Assume (C, F) is a germof a nilpotent nonholonomic Lie

group, { ~ is an orthogonal left-invariant frame on this nonholonomic

Lie group, C~, — its structural constants.Then the nonholonomic geodesic
-y on (G, F) is determinedby the following systemof equations:

yz= ~

(12.2) ~ ~1~v1X~, i= 1,...
I ~ 1~n,
n <j~fl

~ i=n1+1,...,n.
1 ~1~n,

~(f)=~~(i)+ 1

As we havealready seen(in 8), the germ of a nonholonomic manifold can

be approximatedby the germ (M, V
t0~),that, in its turn, is isomorphic to the

germ of osculatingnonholonomic nilpotent Lie group (C,, V~).Let’s describe

the connection betweennonholonomic geodesicequationsfor (M, F) and

for (C, F,).
If {E,} is an orthogonal frame on (M, F) then main quasihomogeneous

parts E~— 1) } of its elementsform a left-invariant orthogonalframe on the

germ of the nonholonomic Lie group (M, Ft°~) (C, Vs). Structural
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constants of the frame ~EY1 ~}areconnectedwith thestructuralfunctions

of theoriginal frame {E, } as follows:

c~.(x),if ~ (1) = ~ (1) + ~ (/)
(13.3) c

1.= / V V V~ 0, else

(if l~~(l) > + p~)f)then c~ 0 and = 0).

Remark that the expressionKristoffel symbols in termsof structuralconstants

showthat

~i= —(C~
1+~1+~,)=0

for { E~— ~)} frame.

Let’s call the procedureof transformationstructurefunction C~, to structural

constant ~ by using the formula (13.3) a “freezing of coefficients” procedure.

PROPOSITION 12.3 (on freezing of coefficients). Assume (M, F) is a germ in

point x of a nonholonomicmanifold, v~°~is a germ of the principal part of

V in the same point. Then the equations of nonholonomic geodesicson

(M, V
10~) (C,, V~) (osculatingLie group) canbeobtainedfrom theequations

for (M, F) by a “freezing of coefficients” procedure.

The geodesicequationson (M, F) and (M, V~°))are closeto eachother in

the metrical sense:

PROPOSITION 12.4. Assume ‘y and ~ are nonholonomicgeodesicscorrespond-

ingly for the germs (M, F) and (M, V~°~)of nonholonomic manifolds, and

-y and ~ havethesameinitial data ({v,}~.~~ )~and {x,}~ 1 is a coor-

dinate system on M consistentwith the distribution V. Then the following

asymptoticsis true for � -÷0

x
1(y(e))—x,(~(e))I= 0 (eFv(0~1), i = I n.

13. REDUCTION THE Xg-FLOW ON HEISENBERG GROUP

Like a geodesicflow on the Lie group C, the Xg-flow on G admitsreduc-
tion, i.e. it is a skew product. Indeed,the mixed bundle over the nonholonomic

Lie group (C, F) is a direct product C x (v a Ut), where v is a linear subspace

of the Lie algebra ~ , determining the left-invariant distribution V, and Ut
is the annihilator of subspacev in a coalgebra g~. In this caseevery ortho-

gonal frame E1} for Lie group is induced by orthogonalframe in the
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nonholonomic Lie algebra,and due to the fact that for Lie groupsthe last two

groups of equations in (13.1) have constantcoefficients, they determinethe

flowon vaUt.

PROPOSITION 13.1 (on reduction of ,Kg-flows). Assume (G, F) is a nonholo-

nomic Lie group. Then a .iVg-flow on its mixed bundle C x (v n Ut) is askew

product with base v a V
1 and band C. The flow on the baseis determined

by the last two groupsof equationsfrom (13.1), the flow in the band— by the

equation

The flow on the base v a Ut posessesan integral, namely energy integral

(‘i’, -‘) = const, i.e.

= const.

This integral allows to select the family of invariant “cylinders” S
5 x Ut C vx Ut.

Let’s turn to considerationthe simplest exampleof ,Kg-flow — a flow on

the 3-dimensionalHeisenberggroup, choosean orthogonalframein the3-dimen-

sional Heisenbergalgebra ,A
1

3: E, , E2~E3, where E3 lies in the centerof

v = Lin {E1 E2} and E3 = [E1~ E2]. It is possibleto choosesuchmetric, for

which this frame is orthogonal,becauseany other metric can be transformed

to this one by meansof someautomorphismof the group(see8). Energycon-

servationleadsto v~+ = const.

Changing (if necessary)parametrizationon nonholonomic geodesics,we can

assume,that tyis constantequalsto 1. So we can introducea new parameter~

so that v1 = cos p, v2 = sin p. The equationson the level surfaceof energy

interval S
1 x IR’ = {(p, X)} taketheform

pX

x=0.

So projectionsof nonholonomicgeodesicson the baseof the fibre bundleare

either circles = cos (cp + p
0), v2 = sin (p + p0) or points v1 = C1, 02 =

We’ll callthem correspondinglygeodesicsof I andII type.

Heisenberggroup, when viewed on as a topological space, coincides with

1R
3. One can choosethe orthogonal frame, consistingof the following vector

fields:



438 V. GERSHKOVICH, A. VERSHIK

a x
2 a a x1 a a

+ , E2— — ,

ax, 2 ax3 ax2 2 ax3 ax3

Second typegeodesicsare left shift of one-parametricsubgroupwith admissible

generatorsof Heisenberggroup.

The equationin thebandfor I-type geodesic:

‘-~=cos(Xt+~,0)E1+sin(Xt+~0)E2

can also be simply solved, and thus we obtain the following descriptionof a

.Kg-flow on Heisenberggroup.

PROPOSITION 13.3. For the nonholonomic Heisenberggroup geodesicsof first
type arecylindric spirals, whoseaxesare arbitrary left shiftsof the froup center.

Geodesicof secondtype are left shifts of 1-parametricsubgroupswith admis-

sible generators.

The .iVg-flow on compact homogeneousspacesof Heisenberggroup — is a

somewhat more interesting object. Let’s present a qualitative description of

suchflows.

PROPOSITION 13.3. There are two classesof nonholonomic geodesicson a com-

pacthomogeneousspaceof a 3-dimensionalHeisenberggroups:

1) curves,everywheredensein 2-dimensionaltors;

2) circles.

The set of initial dataof the geodesicsof I-class hasmeasure1, initial data

correspondingto II classareeverywheredense.

In [17] geodesicflows on compact homogeneousspacesof 1V3 is described

in more detail. The same papercontainsa descriptionofA
Tg -flows for all 3-

dimensional Lie groups and their compact homogeneousspaces. Here we’ll

analysesonly .iVg-flow on the compact homogeneousspaceof group SL
2 JR.

The reasonis that this case turns out to be the most interesting— just like in

the classicalcase.

14.NONHOLONOMIC GEODESIC FLOW ON SL2R.

CONNECTION WITH THE CLASSICAL GEODESIC FLOW

In classical (holonomic) casethe most interesting of geodesicflows are the

flows on compact manifolds of negative curvature. The simplest example of

suchmanifold is a homogeneousspaceof SL2JR.

Choosethe following basis ~ ~ ~73 in the Lie algebrasl2lR.
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01 0 1 1 0

1 0 —I 0 0 —l

Arbitrary nonholonomic 2-dimensionalleft-invariant distribution is generated

by a plane V C sl
2JR such that v + [v, v] = sl2IR. We’ll call such a planenon-

holonomic.

PROPOSITION 14.1. Arbitrary nonholomorphicplane v C s12JR canbe transfor-

med by an automorphismof Lie algebra s12JR into one of the following two

planes:

a) orthohyperbolicplane

Oa
v~=Lin(r~, +112, 11i ~

b) orthoelliptic plane

a j3
0

2=Lin(11
3,,71)= Ia,~ER

jl —a

Let’s call thebasis { ~ + ~ ~ — ~ } of theplane Ut (andthebasis{113~Iii

of the plane 02) appointed basis.Let’s now describemetric tensorson nonho-

lonomic planesin Lie algebra s12JR.

PROPOSITION 14.2. The orbits of metric tensorson v~(v
2) with respectto

automorphisms group of a nonholonomic algebra Aut (sl
2 ~, 01) (resp.

Aut (sl2IR, v
2)) can be parametrizedby positive reals JR~.For arbitrarym>0

this orbit contains the tensor whose matrix in the appointed basis is

in 0

0 1

Detailed investigation of Xg-flows on all compact homogeneousspacesof
SL

2IR is held in [19]. Here we’ll describeonly oneof suchcases.We’ll consider

only restrictionsof the ~A
1g-flow to the invariant set, that is singled out by the

condition 1 = 1 on nonholonomic geodesic(see 13). This set is a bundle

with base5’ x JR’ andband SL
7IR.

THEOREM 14.3. Assume ~ is a compact homogeneousspace of Lie group

SL2 IR, anda metrictensor m ±1, is given. Then:

I) All the trajectoriesare closedon the cylinder S’ x IR
1 (excepttwo fixed

points andfour separatrices,connectingthosepoints),

2) almost all ergodiccomponentsof a .iFg-flow are 4-dimensional manifolds;
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every such componentis a x ~, where a is a closed curvebelonging to a base

5’ x IR’.

Let’s connectthis ,Vg-flow with a well-known geodesicflow on the planesof

constant negative curvature. Assume is a 4-dimensional ergodic component

of the .iYg-flow. This flow determinesa I-parametric subgroup {T,} on ax
Denoteby r theperiodof theclosedcurvea. andconsiderthecascade{T~~},~°=~.

For any x C a the set x x ~, areinvariant componentswith respectto this

cascade.On eachof this componentsthe mapping T~ coincides with the shift
Lg of a homogeneousspace ~ by some element g C SL2IR. By Floquet

theorem we must take one and the sameelement g for all points x C a. In
case the conditions of theorem 12.3 are true then g C SL2IR is hyperbolic.

Therefore the cascade { T } coincides with the cascadeof the classicalgeodesic

flow { R~.} on the homogeneousspace~. It turns out that trajectoriesof a

.A
Tg-flow on ergodic components a x are winding around the trajectories

oftheflowJdxR~ onxx ~Cax~.

Completeinvestigationof ~‘Fg-flow on SL
2JR is given in [19] in [17] descrip-

tion of ,AIg-flows for all 3-dimensional nonholonomic Lie groups and their

compacthomogeneousspacesis given.

15. NONHOLONOMIC EXPONENTIAL MAPPING. SINGULARITIES OF
NONHOLONOMIC WAVE FRONTS

Assume (M, F) is a nonholonomic manifold. By a wave c-front with point

x as a center, we mean the set of end points of nonholonomic geodesics of

length e, starting in x. We denotethis c-front by A
11(x). (Some authors

use another name for A’t(x) — geodesic c-sphere). For Riemann manifolds

wave c-front coincides with c-spherefor sufficiently small c. In IlonholOnOflhic

casethesesetsare different. We’ll describethe wave front for the simplest case

— three-dimensionalnonholonomic Lie groups.

First define a nonholonomic exponential mapping exp~(v, w) as a nlappmg,

transforming t C 1k’ into the end point of thenonholonomicgeodesic,starting

from x with initial data (v, w) C S
1 x F~X),where S, C V(x) is a unit sphere.

A wavefront is equal to the imageof the cylinder 5~x F
t with respectto this

nonholonomicexponent: A~’(x)= exp ~(S
1 x V’).

For example, for a 3-dimensionalLie groupwe obtain that

A”~(e)= exp (S
1 x JR1 ). We xant to describesingularitiesof this exponential

mapping expe. Consider first a 3-dimensional Heisenberggroup 1V
3. Let’s

realizethis groupas JR
3 (see13).

PROPOSITION 15.1. [20]. (On wavefront of Heisenberggroup).
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1. The circles C on S1 x R1 ={(p, X)}, corresponding to = 2irn/e,

n = ± 1, ±2 aretransformedby the nonholonomic exponentialmapping

into thepoints �~= (0, 0, e2/47rn) belongingto thecenterof N
3.

2. In every point e the wave front A’~(e) has a conic singularity (i.e.

the germ of the wave front AV(e) in any point O,~,n = ±1, ±2, . . . is diffeo-
morphicto the germof thecircular conein 0 C JR

3.

The nonholonomic exponentialmappingof the cylinder S1 x 1R1 to A’~(e)

is schematically depicted in Fig. 1. The wave front A 11(e) is a collection of

beads, in the center of the Heisenberggroup. Thesebeadscan be enume-

rated: by integers:n-th bead B~is the imageof the cylinder

S1x [27rn, 27r(n+l)] if n>0, andof S’ x[2T(n—l),2lrn] ifn<0. A

zeroth bead B
0 is the image of the cylinder ~1 x [— 2,r. 2~r];B0 coincides

with the nonholonomic c-sphereSr’(e), i.e.

S~(e)= exp (S
1 x [— 2ir, 2T]).

From the formula for e one can see that all the beadslie inside B ; the
n 0

beads B~ condensethemselvesto the unit elementof thegroupas n —~oo(see

Fig. 1) (comparewith [41]).

THEOREM 15.3. (on singularitiesof wave fronts).

For all 3-dimensional nonholonomic Lie groups the wave front A~’(e) is

for small e diffeoniorphic to thewavefront of Heisenberggroup.

More detailed exposition. as well as the proof of all these statements,are

given in [20]. Methods of this work allow to descript singularitiesof wavefronts

for multidimensional nonholonomic Heisenberggroups with arbitrary left-in-

variant metric. Thesesingularities are calculated by the same methodsas for

dim = 3, althoug multidimensional calculationsare more technically compli-

cated. For other groupswith dim > 3 singularitiesarenot yet calculated.Also
nothing is known about singularities of wave fronts of nonholonomicRiemann

manifolds (of course,except the casewhen they are locally isomorphic to non-

holonomic groups). Even the caseof contact structure in JR3 with arbitrary

metricis not yet investigated.

16. NONHOLONOMIC LAPLACIAN

With every Riemannmetric on a smooth manifold M an elliptic operator

is naturally associated— the Laplace-Beltramioperator~ viceversa,every elliptic

operatorof secondorder determinesa Riemannmetric on the manifold. We’ll

show that a likewise result is true for nonholonomic manifolds (M, F): namely,

with every positive definite quadraticform on the distribution V a hypoelliptic
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operator A~, is naturally associated;it is naturalto call this operatorLaplacian,

or Laplace-Beltrami operator of the nonholonomic manifold. We give three

equivalent definitions of the operator A ~, that are likewise to threeclassical

definition of A.

a) Assume M is a germ of a Riemannianmanifold in some point x E M,
U-openneighbourhoodof x, E1 — orthonormed frame of vector fields

in U. The germ ~ of theoperator A is givenby a formula

A=-

For a germ of a nonholonomic Riemannmanifold (M, F) it is natural to

define thegermof A,, by a likewise formula

A,, = ~

where { E,}~i is an orthogonal frame of vector fields for distribution V. Due

to the fact that distribution V is completelynonholonomic, the conditions

of Herniander’stheoremon sum of squaresare fulfilled (see[37]) andwe obtain

thefollowing statement.

THEOREM 16.1. Assume (M, F) is a nonholonomicRiemannmanifold. Then

A is a hypoelliptic operator.

b) Laplace-Beltramioperatorcan be alsodefinedby a formula

—AU=divgrad U.

In order to transfer this formula to anonholonomiccasedenote

grad,,, = F,, grad where F,, : TM -÷V is the orthogonalprojectoron V, and

div~ diPF~.

PROPOSITION 16.2. Assume (M, F) is a nonholonomic manifold. Then

A,, = div~grad,,,.
This statementshowsthat A,, doesnot dependon the concretechoiceof the

orthogonal frame; this propositionsallows to define A,, for the whole mani-

fold.

c) The operator A can be also defined by meansof a differential complex:

A = dll + lid (seee.g. [38]). Denote d~= F~d and =

PROPOSITION 16.3.



V. GERSHKOVICH, A.

A,, = d,,li,, + 5,4,,

Remarks1. Thesedefinitions of A,, can be applied also in casewhen the

distribution V is not completely nonholonomic.For example,if F is integra-

ble, it determinea foliation ~ on the manifold M then A,, determinesa

family of Laplacianson fibresof ~

2. Assume V’ is anorthogonalcompletionto V in TM. Then A = A,, + A,,1.

We’ll say that two distributions F, W commute,if thereexist suchorthogonal

lases{ E, } and i~i.} correspondinglyfor distributions V and W that [E,~~‘j] = 0

for all i and j.

PROPOSITION 16.4. If distributions V and F
1 on a manifold M commute,

that theoperatorsA,,,, A,,I, A commutewith eachother.

In this caseLaplacian A,,, hasthe sameset of eigenfunctionsas operator A.

Example. Assume C is a 2-stepnilpotent Lie group, F — canonicaldistri-

bution on C. Then A,, and A commute.In particular, Laplacian A,, of a

contact structure commuteswith A.

17. HOPF-ALEXANDROVTHEOREM

Classical Hopf theorem(see e.g. [34]) statesthat on closed manifolds there

are no harmonic functions (i.e. solutions of the equation A U = 0, that are

different from constants.

Let’s call a function U on a nonholononiic manifold (M, F) V-harmonic,

or hypoharmonic, if A,,U = 0 A.D. Alexandrov proved the following genera-

lization of Hopf theoremto thenonholonomiccase.

THEOREM 17.1. (On hypoharmonic functions). Assume (M, F) is a closed

nonholonomic Riemann manifold. Then every hypoharmonic function on M

is constant.

Let’s give a short proof of this theorem, that follow the classicalexample

and at the sametime demonstratestheuseof nonholonomictechnique.Calculate

A,,(f2) = divP~ gradf2 = divF,, 2fgradf=

= div 2f grad,, f= (grad,, f, grad,,!) + 2fA,,f

In casef is hypoharmonic,we obtain

(grady f, grady f) = div grad,, f2

Due to Greentheorem(seee.g.[34])
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0 = f divgrad~f
2dm = f (grad~f.grad,,f) din

(here dm is a Riemann measureon M). Therefore F~gradf = 0, i.e. gradf
is orthogonal to the distribution V therefore f remainsconstantalongarbi-

trary admissible curve in M. According to Rashevsky-Chowtheorem(see 7)

everypair of points from M can be connectedby an admissiblecurve. There-

fore f is constanton M.

Remark. This theorem can be easily modified to the case when the distri-

bution K is not completelynonholonomic(see [3, 22]).

Another proof of this theoremcan be obtainedfrom Alexandrov’s maximum

principle for hypoharmonicfunctions.

THEOREM 17.2. (Alexandrov’s maximum principle). Assume a hypoharmonic

function is defined on someopen domain U. Then it cannothavemaximum

inside U.
Summarizing: The subspaceof hypoharmonicfunctions is onedimensional

andincludesonly constants.

18. NONHOLONOMIC GREEN FORMULA

Assume (M, F) is a nonholonomicRieniann manifold, dm — Riemannmea-

sure011 M.
Then the following analogueof Greenformula is true.

PROPOSITION 18.1. Assume (M, F) is a nonholonomic Riemann manifold.

Thenthe following formulasaretrue:

1) operator A,, is selfadjoint in L2 (M), i.e.

f wA~udm= f uA~wdm,

IM

2) u A,, dm = (grady u, grad,, w) dm

IM IM

Formulas 1 .2 showthat A,, is a positive definite selfadjointoperator.
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PROPOSITION 18.2. (Metivier [2]). Assume (M, F) is a nonholonomiccompact

Riemann manifold. Then the operator A,, hasa positive discretespectrum.

Denotethe elementsof this spectrumby Xr ~ X~’ ~ . . . It turns out that the

asymptotics of this spectrumdependsonly on its principal quasihomogeneous

part and, therefore,the problem of finding this asymptoticscan be reducedto

thesameproblemfor nilpotent Lie groups(for detailssee19).

19. PRINCIPAL QUASIHOMOGENEOUS PART OF THE NONHOLONOMIC
LAPLACIAN

Somepreliminarydefinitionsarenecessary.

Assume (M, F) is a germ of a nonholonomic manifold in somepoint x,

N-growth vector of the distribution F. The filtration, induced by thevector

N on the Lie algebra J Feet of jets of vectorfields (see5,6) canbe naturally

extendedto its universalenveloppingalgebra ~ The correspondinggraduation
allows to represent ~ as a direct sum of quasihomogeneouscomponent

where O?
11 is generatedby monomials

ami amn
x
1’ . . . ~ — . . —
1 fl ax~ axmn

that satisfy thecondition

~ (l~i~,,W~

By p
1 we denotethe projector p~: = a Qif on i-th componentof this

sum. The above-mentionedfiltration consistsof Qi. = a Qi’. The action
/ i~j

of the group of quasihomogeneousdilatations can be naturally extended to

In thesetermsnonholonomicLaplacian

A,, =

belongsto ~ 2 C ~ By a principal quasihomogeneouspart of the Lapla-

cian we’ll understandthe operator p_2 A,, C ~_ 2 Let’s denoteit by ~
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PROPOSITION 19.1. Assume (M, F) is a germ of a nonholonomic manifold

in somepoint x, — a germ (in point x) of a distribution, that is a principal

quasihomogeneouspart of a distribution V. Then ~ =

So the principal quasihomogeneouspart of Laplacian in point x of a non-

holonomic manifold can be naturally interpreted as a nonholonomic Laplacian

on the germof anosculatingLie group (G~,V~) (M, v~°~).
So it is necessaryto investigatepropertiesof nonholonomic Laplacianson

homogeneousnilpotent Lie groups G. The action { J-I,~} of the quasihomoge-

neousdilatationsgroupon Lie group C inducesits actionon thespace2’2 (G)

of measurablefunctions on G with integrablesquare.Namely, for f C ~22 (G)

we assumethat

(H~[)x =f(H~x).

We denote quasihomogeneousdilatations on ~ (G) by IJ~ in order to

distinguish them from dilatations of differential operators;for which we preserve

the denotationH~.

PROPOSITION 19.2. Assume (G, F) is a nilpotent nonholonomic Lie group,

anda left-invariantmetric is given. Then the following formulasaretrue:

I) Hr_1A,,Ht=t2Av

2) H~A,,=t2A~

(i.e. ((H~A,,)flx= t2(A,,f)x).

Let’s now turn to spectrsand spectralfunctions. Remind (seee.g. [35]) that

the spectralfunction e(x, y, A) of a self-adjoint operator A is a Kernel of

its spectralprojector A( ~. In case of a discrete spectrum e(x, y, A) can

be expressedas follows. Assume S,~,A,, = Ar ‘~ X~’ ~ . . . } is an ordered

set of eigenvaluesof the operator A,,, and {J. }~11 is an orthonormedsetof

correspondent eigenfunctions.

e(x, y, A) = Y~ [(x)Ji(y)

xi~il~

(In case we consider several operators, we’ll point out whosespectralfunction

in considered by explicitly indicating this operator e.g. e~
5~(x, y, A) or

ea(x, y, A).

PROPOSITION 19.3. Assume (G, F) is a nilpotent nonholonomic Lie group,

A,,-Laplacian on (C, F); then the spectral function ea (x, y, A) satisfies
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the following conditions:

1) ea,,(x. x, A) doesnot dependon x

2) ea (e, e, ,72 A) = c/f — 1 ~ H (e, e, A)
V n Vn

The first property is fulfilled for all left invariant operatorson a Lie group,

becausethen left shift of an eigenfunctionby an element of the group is also

aneigenfunction,with thesameeigenvalue.

The next result of Metiver reducesthe calculation of asymptoticsof a spectral

function e(x, x, A) for a nonholonomic Riemannmanifold (M, F) to the

groupcase.

THEOREM 19.3. [2]. Assume (M, V) is a germ of a nonholonomic Riemann

manifold in some point x, V~°~-the principal part of V in the point x. Then

ea (x, x, A) —~ e,,(o) (x, x, A).

I.e. asymptotics of ~ ~ (x, x,. A) is the sameas for the spectral function

of theLaplacianof the osculatingLie group.

In order to find this asymptoticswe makethe following definition. By NA (A)

we denotethe total number of eigenvaluesof operator A that do not exceed

A. The function N canbe expressedin termsof aspectralfunction on a compact

manifold by a formula.

A~(A) = eA (x, x, A) dm

Quasihomoneneouscharacter of the spectral functions allows to show that

for compacthomogeneousspaceof a nilpotent nonholonomic Lie group (C, F)

the function N~ hasthefollowing asymptotics:

N.~ (A) p Fol,, G• Ad,,/2
,, ~ G

where d,, is a homogeneous(Hausdorff) dimension of G, Vol,,G its Haar

volume and the constant ~G (we’ll call it density) dependon the group C.

(We’ll investigatethis characteristicin the next point). In thesetermsMetivier’s

theoremcanbe reformulatedasfollows.

THEOREM 19.4. Assume (M, F) is a germ of a nonholonomicRiemannmanifold

in somepoint x, A,, is a nonholonomicLaplacianon (M, F) and eA ,,(x. x, A)

its spectralfunction. Then the following limit exists
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lim A~~/
2e(x,x, A)=FG

X

where d,, is a Hausdorff dimensionof the nonholonomic manifold (M, F),
is a osculatingnilpotent Lie group.

It is therefore natural to expect that the asymptotic formula for Na ,,(X)

can be generalized to the case of nonholonomic Riemann manifolds; in this

generalizationHaar measureon a group C must be changedto a measureon

a nonholonomic Riemann manifold constructedby meansof densities PG~

(see20) definding on osculating Lie groups,where Haarmeasureon C~ is in-

ducedby Riemannmeasureon M.

20. HYPOTHESIS ON MAIN PRINCIPAL IN WEYL FORMULA FOR NON-
HOLONOMIC LAPLACIAN

For Laplacian on theRiemanncompactmanifold M theasymptoticsof eigen-

valuesgrowth is given by the classical Weyl formula (see for example [35]):

Na(A) ~ 1 ~Cd VolM~Ad!2 (I +o(1))
Xj~ IT

where d = dim M, is the dimensionof M, Vol M is Riemannvolume of M

and Cd is the constantdependingonly on dimensionof M. Metivier’s theorem

allows to presentthe principal term of asymptoticsfor the spectrumof the non-

holonomic Laplacian on a compact nonholonomic manifold (M, F) in the

following form:

(20.1) Na ,,(A) = C(M V) . A’~,,/2(l + °(1))

where d~ is the Hausdorffdimensionof the nonholonomicmanifold (M, F)
and

C(M ~ ‘M FGxdm

where dm is the Riemann measureon M, PG~is the density on osculating

Lie group C~ (see19). So

(20.2) Na,,(A) = (fM PGxdm ) Ad,,/2 (1 + o (1))

It is natural to define a nonholonomic volume of a compact nonholonomic
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manifold (M, F) as

I PG~d~

THEOREM 20.1. Let (M, F) be a nonholonomic Riemannmanifold, A,,, be

the nonholonomic Laplacian on (M, V). Then the spectrum of A,, hasthe

following asymptotics

Na (A) Fol~M.Xa’,,1
2

V

Let’s turn to the interpretation of the density PGx~Let (C, V) be a non-

holonomic nilpotent Lie group. A,, — the nonholonomic Laplacian on C

and ~(t) be the diffusion Markov processon C with initial state ~(0) = e

and generator A,,. Denote by p
1(x, y) probability density of the transition

from x to .v during time t. This density is calculatedwith respectto Haar

measureon the osculating Lie group C. In particular p~(e,e) meansthe

probability density of returning to the unit e C C during time t.

PROPOSITION 20.2. For small t the density p~(e,e) has the following asymp-

totics:

p~(e~e)=pG.tdv/2 (1 + 0(1))

wherePG — density for Lie group Cx.

The proof of proposition is standard.So the problem about principal term of

generalizedWeyl’s formula is reduced to (nilpotent) group case.For thesimplest

nilpotent groups this problem was solved byGaveau[5]. We shall return to the

questionelsewhere(*).
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